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Definition

Let P be the set of natural prime numbers. The prime number counting
function is

π(x) = #{p ∈ P : p ≤ x} =
∑
p≤x

1 .

Usually one works with the Chebyshev counting function

ψ(x) =
∑
pk≤x

log(p)

which has a simpler structure.

The famous prime number theorem reads

π(x) = li(x) + E(x) or equivalently ψ(x) = x + E(x)

for error terms E(x).
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One investigates the properties of ψ by complex analysis of ζ(s):

Definition

Riemann’s zeta function is defined on the half plane Re(s) > 1 by

ζ(s) =
∞∑
n=1

n−s =
∏

p prime

1
1− p−s

.

It is absolutely convergent for Re(s) > 1.

The functional equation for the completed zeta function

Z(s) = π−
s
2 · Γ(

s

2
) · ζ(s)

reads Z(1− s) = Z(s), and provides a meromorphic continuation of ζ(s)
to the complex plane, which has a simple pole at s = 1, trivial zeros for
s = −2,−4,−6, . . ., and nontrivial zeros in the strip 0 < Re(s) < 1.
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Consider the Mellin pairing

F (s) =

∞∫
0

f(x)xs
dx

x
↔ f(x) =

1
2πi

c+i∞∫
c−i∞

F (s)x−sdx .

The negative logarithmic derivative of ζ(s) is

F (s) = −ζ
′(s)
ζ(s)

= s

∞∫
0

ψ(x)x−s−1dx

Classical explicit formula

ψ(x) = − log(2π) +
∗∑
%

ord(%)
x%

%
, ordζ(%) = ResF (%) .

So the orders of ζ(s) (the residues of F ) control the prime distribution.
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This formula translates knowledge of larger zero free regions of ζ(s) to
smaller error terms E(x).

Hadamard/de la Vallée Poussin 1896: Pole at s = 1, no zeros on
line Re(s) = 1, gives asymptotic ψ(x) = x+ o(x) with small o,
using a trigonometric identity on

∑
n−s.

Best known approximation today comes from the zero free region
which gives

ψ(x) = x + O

(
x · exp

(
−c · log(x)

3
5

log(log(x))
1
5

))
.

This was obtained by Vinogradov and Korobov in the 1960’s, using
mean value theorems on exponential sums.

Riemann’s Hypothesis is Re(%) = 1
2 for every nontrivial zero,

which implies the best possible approximation ψ(x) = x+O(x
1
2+ε)

or π(x) = li(x) +O(
√
x log(x)) for the counting function π(x).
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Explicit formula holds for more general arithmetic data:

Dedekind zeta functions

Distribution of prime ideals norms of a number field K as given by the
counting function

ψK(x) =
∑

N(p)k≤x

log(N(p))

is encoded in the Dedekind zeta function

ζK(s) =
∑

a

N(a)−s =
∏
p

1
1−N(p)−s

.

Prime ideal theorem: ψK(x) = x+ o(x).
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Artin L-series

Distribution of prime ideals norms weighted by characters χ = Tr(%) of
the Galois group of L/K

ψχ(x) =
∑

N(p)k≤x

log(N(p))χ(pk)

is encoded in the Artin L-series

L(s, χ) =
∏
p

1
det(id− fp)(N(p))−s

.
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Tate’s Thesis

For a character χ, L(s, χ) has a meromorphic continuation to C with (at
most) a simple pole at s = 1, trivial zeros on the real line, and nontrivial
zeros in the strip 0 < Re(s) < 1.

A. Weil’s explicit formula

For suitable f : (0,∞)→ C and Weil’s summation technique,

∑
p,n

log(N(p))χ(pn)f(N(p)n) =
∗∑
%

ordL(%)F (%)

holds where % runs over the zeros/poles of L(s, χ).

Counting functions satisfy ψ(x) = x+ E(x) as in the classical case,
error terms E(x) unknown until location of the zeros is discovered.
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We call these zeta functions analytic zeta functions, because

they have a convergent Euler product expansion
(hence no zeros for Re(s) > 1),

they have a meromorphic continuation to the complex plane,

its zeros and poles control the counting function,

the zeta function behaves nicely, so tools from complex calculus
apply.

Usually these properties follow from a convenient functional equation like
Z(s, χ) = Z(1− s, χ∗), which in turn comes from the fact that the zeta
function is a Mellin transform of some modular function (or form).

But that’s not mandatory, for example the pair

ψp(x) =
∑
pk≤x

log(p) =
⌊

log(x)
log(p)

⌋
, ζp(s) =

1
1− p−s

also has these properties, also if p is any positive real number.
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Some arithmetic questions have no analytic or geometric background:

Chebyshev’s bias hypothesis

There are more primes p ≡ 3 mod 4 then p ≡ 1 mod 4.

We have to examine the functions

ψa,m(x) =
∑
pk≤x

p≡a mod m

log(p) , ζa,m(s) =
∏

p≡a mod m

1
1− p−s

.

Dirichlet’s density theorem

ψa,m(x) = x
φ(m) + o(x), which for the zeta function reads

ζa,m(s) ∼ (s− 1)−
1

φ(m)

for s→ 1+.

Not enough to answer Chebyshev’s question since the main term does
not depend on a. Moreover, we cannot look behind the line Re(s) = 1
because there is no meromorphic continuation.
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That is quite unfortunate: Loss of regularity means

most tools of analytic number theory just don’t work anymore,

function behaviour for Re(s) > 1 no longer related to critical strip,

we cannot speak of poles/zeros in the critical strip.

Idea to attack such problems (Sarnak 1990’s): Use strong assumptions
on the distribution of the zeros of the functions L(s, χ) (GRH and GSH,
both far out of reach) to proof a normal distribution of the primes in
progressions. If both assumptions hold, there is indeed a bias in a more
general setting. It is too small to turn up in the main term of the density
theorem.

H. 2008: Relate these restricted products to analytic zeta functions using
a functional equation system instead of a single functional equation to
transfer analytic properties.
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Chebyshev’s question is a about arithmetic of the quadratic field
K = Q(i):

Prime numbers p ≡ 1 mod 4 are those which decompose in K:
pOK = P1P2, N(Pj) = p, decomposition type (e, f, g) = (1, 1, 2).

Prime numbers p ≡ 2 mod 4 are those which ramify in K:
pOK = P2, N(P) = p, decomposition type (e, f, g) = (2, 1, 1).

Prime numbers p ≡ 3 mod 4 are those which are inert in K:
pOK = P, N(P) = p2, decomposition type (e, f, g) = (1, 2, 1).

We use this to factorise the Dedekind zeta function of K

ζK(s) =
∏
p

1
1−N(p)−s

=
∏
p

(
1

1− p−fs

)g
.
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Hence we have a decomposition

ζK(s) =

( ∏
1 mod 4

1
1− p−s

)2

·
∏

2 mod 4

1
1− p−s

·
∏

3 mod 4

1
1− p−2s

.

Which we simply write as ζK(s) = ζ1(s)2 · ζ2(s) · ζ3(2s).

We also have the trivial decomposition ζQ(s) = ζ1(s)ζ2(s)ζ3(s).

We write this as a functional equation system:

ζ1 ζ3 ζ2
ζK 2[1] [2] [1]
ζQ [1] [1] [1]

where g[f ] is a formal symbol, which acts on complex functions by
(f [g]) ∗ L(s) = L(fs)g.

We can invert this system because its determinant 2[1]− [2] is not zero.
Thus ζ1 and ζ3 are combinations of the analytic functions ζQ, ζK and ζ2
...but over which field and in which vector space?
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So the main problems of this talk are

Properly define the operators and the field in which they live.
The field will be similar to a local field in many aspects, but it will
not operate on meromorphic functions (we cannot hope for this,
because already ζ1 from the previous example is not meromorphic).
We have to switch to the counting functions instead.

Properly define the functional equation system for general settings.
We have to choose n analytic zeta functions and relate them to
precisely n arithmetic zeta functions using operators from our field.
There will be multiple ways to do that.

Show that the determinant does not vanish.
For this we compute the principal component decomposition of the
system. The eigenvalues turn out to be 1-units in the field.

In fact this is a purely group theoretic phenomenon, which does not
depend on number theoretic context.
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A tool used frequently in analytic number theory is the Dirichlet algebra
of arithmetic functions:

Definition

A function f : N→ C is called arithmetic function. The set of these
functions form a C-algebra using addition of functions and Dirichlet’s
convolution

(f ∗ g)(n) =
∑
a,b∈N
ab=n

f(a)g(b) .

We have Dirichlet’s identity

F (s) =
∞∑
n=1

f(n)n−s , G(s) =
∞∑
n=1

g(n)n−s

⇒ F (s) ·G(s) =
∞∑
n=1

(f ∗ g)(n)n−s .
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Important arithmetic functions:

The neutral element

ε(n) =
{

1 if n = 1
0 otherwise

,

∞∑
n=1

ε(n)n−s = 1 .

The 1-function

1(n) = 1 ,

∞∑
n=1

1(n)n−s = ζ(s) .

The Möbius inversion function µ = 1−1

µ(n) =
{

(−1)r if n = p1 · · · pr
0 otherwise

,

∞∑
n=1

µ(n)n−s =
1
ζ(s)

.
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Idea for our field of operators: Turn this algebra into a field.

Definition

An extended arithmetic function is a function f : (0,∞)→ C which has
countable support which accumulates at most at 0. We form the
extended convolution

(f ∗ g)(x) =
∑
a,b>0
ab=x

f(a)g(b)

which turns the set Q of these functions into a field.

Functions which are supported on a single point are denoted by

[m](x) =
{

1 if x = 1
m

0 otherwise .

We have [a] ∗ [b] = [ab], and obtain the desired operation
[m] ∗ f(x) = f(mx).
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Definition

The absolute value |f | of f ∈ Q is the maximum of its support in (0,∞).
We endow Q with the induced topology.

We have ultrametric inequality |f + g| ≤ max(|f |, |g|), and call

R = {f ∈ Q : |f | ≤ 1} the ring of integers of Q,

m = {f ∈ Q : |f | < 1} the maximal ideal of R,

U (1) = [1] + m the group of 1-units contained in Q×.

Indeed m is the unique maximal ideal of R. But Q is not a local field,
unfortunately we have mn = m for every n ∈ N, so the topology of Q is
quite different from the classical local topology.

Analogue of the unit group decomposition: Q× = (0,∞)× C× × U (1),
so (0,∞) plays the role of the valuation group.
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The field Q is a nice and safe playground:

The analogue of an infinite series

∞∑
n=1

an[bn]

converges always in Q whenever (bn) tends to infinity.

Infinite products like
∞∏
n=1

1
1− [bn]

converge always in Q whenever (bn) tends to infinity.

Especially, the inverse of a 1-unit always has a geometric series
expansion

1
1− f

=
∞∑
k=0

f∗k .
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The operation of most elements of Q on meromorphic functions is not
well defined, either for convergence reasons or because complex powers
zw depend on the choice of a branch.

Enabling complex powers:
We switch to the negative logarithmic derivative

F (s) = −L
′(s)
L(s)

which again is meromorphic, but now has only simple poles with
ordL(z) = ResF (z). Weil’s explicit formula holds, we just have to
replace ord by Res.

The operation of Q is now the linear continuation of the rule

[m].F (s) = mF (ms)

for m > 0, which is well defined.
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Deposing convergence problems:
The connection between the negative logarithmic derivative F (s) and the
counting function ψ(x) is given by the Mellin transform

F (s) = −L
′(s)
L(s)

= s

∞∫
0

ψ(x)x−s−1dx

as seen at the beginning. The action [m].F (s) = mF (ms) corresponds to

[m].ψ(x) = mψ(x
1
m )

on the right hand side.

This action is well defined for every f ∈ Q whenever ψ is locally constant
and its support is bounded away from 1.
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The set of counting functions ψ : (1,∞)→ C which

are piecewise constant,

have support bounded away from 1,

forms a Q-vector space with operation(∑
aj [bj ]

)
.ψ(x) =

∑
ajbjψ(x

1
bj ) .

Note that for fixed x > 1 only finitely many terms contribute.

The equivalent series for complex functions(∑
aj [bj ]

)
.F (s) =

∑
ajbjF (bjs)

does not converge in general.
We have to do Q-computations behind the Mellin integral.
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The functional equation system from the introduction

ζ1 · · · ζn E1 · · · Em
L1 t11 · · · t1n r11 · · · r1m
...

...
...

...
...

Ln tn1 · · · tnn rn1 · · · rnm

for the counting functions readsψ1

...
ψn

 = T.

ϕ1

...
ϕn

 + R.

φ1

...
φn


which is an inhomogeneous Q-linear equation system

in indeterminates ϕ1, . . . , ϕn,

with a square matrix T with components in Q,

and the right hand side ψ −R.φ, where each component is a
counting function which has a Mellin transform which is
meromorphic on C and satisfies Weil’s formula.
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The first nontrivial choice:

Pick a normal number field K, and let

K1, . . . ,Kn be the conjugation classes of cyclic subfields of K,

P1, . . . , Pn be the partition of the unramified prime numbers
according to their decomposition behaviour in K.

The match is given by a bijection {P1, . . . , Pn} → {K1, . . . ,Kn}:

For a set P , M = M(P ) is the maximal subextension of K/Q in which
every p ∈ P is totally decomposed.

Inverse bijection:
An intermediate field M selects those prime numbers p, which have M as
their decomposition field in K/Q: for every p|p the decomposition group
Dp = {σ ∈ G(K/Q) : σ(p) = p} has fixed field M up to conjugation.

Well defined, because decomposition groups are always cyclic, and do not
depend on the choice p|p up to conjugation.
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Enumerating the prime sets and intermediate fields according to the
bijection we get

ζ1 · · · ζn E1 · · · Em
L1 t11 · · · t1n r11 · · · r1m
...

...
...

...
...

Ln tn1 · · · tnn rn1 · · · rnm

where we put

ζj(s) =
∏
p∈Pj

1
1− p−s

on the arithmetic side, and

Lj(s) = ζKj (s) =
∏

pEOKj

1
1−N(p)−s

on the analytic side. The finitely many primes p1, . . . , pm which ramify in
K are attached to single Euler factors

Ej(s) =
1

1− p−sj
(on the analytic side).
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The component tij ∈ Q then is given by the decomposition type of
p ∈ Pj in the intermediate field Ki:

pOKi = p1 · · · pg , N(pk) = pfk ⇒ tij =
g∑
k=1

[fk] .

For the ramified primes we have to put

pOKi = pe11 · · · pegg , N(pk) = pfk ⇒ rij =
g∑
k=1

[fk] .

Then we obtain for row each intermediate field Ki the equation

Li(s) =
n∏
j=1

tij .ζj(s) ·
m∏
j=1

rij .Ej(s)

which is just the i-th row of our system.
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Pre-Theorem

For every normal number field K and the partition P1, . . . , Pn given
above, the partial zeta functions

ζj(s) =
∏
p∈Pj

1
1− p−s

are formal Q-linear combinations of Dedekind zeta functions and single
Euler factors.

...only formal because the action of Q has no meaning on zeta functions.

Note that the components tij and rij have finite support, so their action
is defined. But we will see that the determinant is not [1], so the linear
combinations have non-finite components.

The inversion is well defined for Re(s) > 1, because the Euler factors
drop very fast as Re(s)→∞. Sadly that is precisely the half plane which
we are not interested in.
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Theorem (H. 2009)

For every normal number field K and the partition P1, . . . , Pn given
above, the partial counting functions

ψj(x) =
∑
pk≤x
p∈Pj

log(p)

are Q-linear combinations of Chebyshev’s counting functions of
intermediate fields of K/Q and single prime numbers.

Remember that Riemann and Chebyshev were interested in ψ(x) in the
first place, the Dirichlet series ζ(s) is just a tool to analyse it.

Proof of theorem: Determinant of the functional equation system is not
zero, and Q is a field.
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For the example K = Q(i) from the introduction, we obtain

F1(x) =
1

2[1]− [2]
· (FK(s)− 2FQ(2s)− F2(s) + 2F2(2s))

and

F3(x) =
1

2[1]− [2]
· (−FK(s) + 2FQ(s)− F2(s))

for the logarithmic derivatives of the partial Euler products by solving the
Q-linear equation system. These are identities of analytic functions on
the half plane Re(s) > 1.
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A refinement of this theorem is obtained by the following choice:

Pick a normal number field K,

Let L1, . . . , Ln be the Artin L-series on Q defined by the
n = [K : Q] irreducible group characters χ : G(K/Q)→ C×.

Let P1, . . . , Pn be the partition of the unramified prime numbers
given by the characters.

For a prime number p and a character χ we put

χ(p) = χ(
[
K/Q

p

]
)

for the Artin symbol and any p|p, and form the partition P1, . . . , Pn
induced by the map χ1, . . . , χn : P → Cn.

Here the bijection and the formulation of the operators is difficult:
We have to formulate the insertion of a character∏ 1

1− p−s
7→

∏ 1
1− χ(p)p−s

as the action of an element of Q which must not depend on p, but on
the set Pj .
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Note that the counting function for Lj now is defined by

ψ(x) =
∑
pn≤x

log(p)χ(pn)

so the power of p enters χ, hence it is not constant even if the prime
number comes from a fixed set Pj .

We encode the powers in a series in Q. But how to define it?

For the trivial character χ(n) = 1(n) we want it to be ε(n), so we
convolute χ with the Möbius function µ = 1−1:

tχ,j =
∞∑
k=1

[n]
n

∑
ab=k

µ(a)χ(p)b .

Here χ(p) only depends on the set Pj , not p itself.
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tχ,j .ψj(x) =

( ∞∑
k=1

[k]
k

∑
ab=k

µ(a)χ(p)b
)
.
∑
pk≤x
p∈Pj

log(p)

=
∞∑
k=1

∑
ab=k

µ(a)χ(p)b
∑

pn≤x
1
k

p∈Pj

log(p)

=
∑
p∈Pj

∞∑
n=1

∞∑
a,b=1

µ(a)1[pabn ≤ x]χ(p)b log(p) =
∑
p∈Pj

∞∑
n=1

∞∑
a=1

µ(a)ψχ,p(x
1
an )

=
∑
p∈Pj

∞∑
m=1

ψχ,p(x
1
m )

∑
an=m

µ(a)1(n)︸ ︷︷ ︸
=ε(m)

= ψχ,j(x) .
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Theorem (H. 2009)

For every normal number field K and the partition P1, . . . , Pn induced by
the characters, the partial weighted counting functions

ψχ,j(x) =
∑
pk≤x
p∈Pj

log(p)χ(pk)

are Q-linear combinations of counting functions associated to Artin
L-series.

We have to take some additional care if K is not abelian. Then the
insertion of the Frobenius determinant is more complex.
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So far, we have just played around with counting functions. How can we
translate the poles from the analytic side to the arithmetic side?

Different actions of [m] on functions:

On zeta functions [m].ζ(s) = ([m] ∗ ζ)(s) = ζ(ms) inserts an
exponent by definition,

on logarithmic derivatives the action [m].F (s) = mF (ms) moves
simple poles

[m] .
1

s− %
=

m

ms− %
=

1
s− %/m

and preserves their residues.

So a Q-linear combination of functions ψχ(x) is attached to a pole set
with residues, also if the associated zeta function has no meromorphic
continuation.
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Thus we can visualise the asymptotic behaviour by a pole set:

7−→
(1− 1

2 [2])−1

This action comes from the geometric series expansion

1
[1]− 1

2 [2]
=

∞∑
k=0

2−k
[
2k
]
.

⇒ Q translates zero free regions from analytic to arithmetic side.
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Give and take: Arithmetic zeta functions have some properties that
would be nice to have for analytic zeta functions.

Gel’fond-Schneider theorem implies that zeta functions ζ1, . . . , ζn
belonging to arbitrary prime number partitions are linearly independent if
we put Q = C(Q+) instead of Q = C((0,∞)).

Corollary

Given a normal number field K and the set {Kj} of cyclic subextensions
of K/Q up to conjugation, then the zeta functions ζKj (s) are formally
Q-linearly independent (proper version for the counting functions).

C-linear independence was already known.
But Q-operations also stretch and squeeze the pole set.

Much weaker then GSH, because Q operates on all poles simultaneously.
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Give and take: Arithmetic zeta functions have some properties that
would be nice to have for analytic zeta functions.

In the author’s opinion, the theorem which comes closest to Riemann’s
hypothesis is

Bombieri-Vinogradov

We have the asymptotic∑
m≤y

max
a mod m

gcd(a,m)=1

∣∣∣∣ψa,m(x)− x

φ(m)

∣∣∣∣ = O
(
yx

1
2 log(x)

)
for
√
x log−c(x) ≤ y ≤

√
x.

which means that Riemann’s hypothesis is true on the average over the
arithmetic progressions.

What does it imply for the zeros of the functions L(s, χ)?
...still work in progress, nonlinear operation max is main obstruction.
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A nontrivial example: Let K = Q( 3
√

2, ω) be a D6-extension of Q.

Analytic side:
Its cyclic subextensions are K, K ′ = Q(ω) and the conjugate fields
Kj = Q( 3

√
2 · ωj).

Arithmetic side:
The possible unramified decomposition types are

Decomposition field K: pOK = P1 · · ·P6.

Decomposition field K ′: pOK′ = p1p2 with piOK = Pi.

Decomposition field Kj : pOKj = p (fixed j) with pOK = P1P2P3.

Arithmetic determinant is∣∣∣∣∣∣
6[1] 3[2] 2[3]
3[1] [1] + [2] [3]
2[1] [2] 2[1]

∣∣∣∣∣∣ = 22 · 3 ·
(

[1]− [2]
2

)
·
(

[1]− [3]
3

)
.
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For a finite group, form the extended matrix T = (tgh) over Q with

tgh =
∞∑
k=1

[k]
k

∑
ab=k

µ(a)1[gb = h] , g, h ∈ G

where the elements of G have a fixed ordering. The characteristic
polynomial of the matrix associated to the Artin-L-series is a divisor of
det(T − λid) in Q[λ]: Using Q-elementary row transformations we can
construct the characters G→ C from the indicator functions, and group
them in a block matrix. Other choices of matches result in other
groupings.

T itself corresponds to the finest matching possible.
It therefore suffices to show det(T ) 6= 0 over the field Q.
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Theorem (H. 2009), Part I

For every finite group G, the extended matrix has a principal component
decomposition

T = F ·D · E · F−1

with

D =


1

∗
. . .

...
. . .

. . .

∗ · · · ∗ 1

 , E =


λ1

. . .
. . .

λn


for λj ∈ Q which are 1-units, a unitary matrix F ∈ Cn×n, and
D ∈ Rn×nf .
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Theorem (H. 2009), Part II

The eigenvalues have a convergent product expansion

λ = λϕ =
∏
p

[1]− 1
p [p]

[1]− ϕ(p)
p [p]

for Dirichlet characters ϕ. The eigenvalue has finite support if and only if
ϕ is a principal character, in this case we have

λ = λm =
∏
p|m

(
[1]− 1

p
[p]
)
.
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For the proof, we need the generator graph of the group G:

Its vertices are the elements of G,

(g, h) is an edge if and only if g ∈ 〈h〉.
A prime subgraph is a subgraph which is fully associated, and has no
ingoing edges.

The factorisation of G is computed by removing such subgraphs
iteratively. Each subgraph is associated to a set of principal vectors.
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An example: G = Z/6Z. The generator graph of this group is

1 // 5oo

2

ggNNNNNNNNNNNNNN //

^^>>>>>>>
4

iiTTTTTTTTTTTTTTTTTTTToo

ggNNNNNNNNNNNNNN

0

OO GG��������������

77pppppppppppppp

55jjjjjjjjjjjjjjjjjjjj // 3

WW..............

OO

where we exclude the reflexive edges (g, g).
We remove the root 0. In the next step, the graph is

1 // 5oo

2

ggNNNNNNNNNNNNNN //

^^>>>>>>>
4

iiTTTTTTTTTTTTTTTTTTTToo

ggNNNNNNNNNNNNNN

3

WW..............

OO
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Now we remove the root 3, which is itself a prime subgraph.

1 // 5oo

2

OO

//

@@�������
4

^^>>>>>>>
oo

OO

Here {2, 4} is a totally associated subgraph with no ingoing edges.
We remove these vertices, the remaining graph now is 1↔ 5.

So the factorisation of Z/6Z is given by the sets

{0} , {3} , {2, 4} , {1, 5} .
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Components of T are

tgh =
∞∑
k=1

[k]
k

∑
ab=k

µ(a)1[gb = h] .

Lemma

Eigenvectors are of the form

f =
(
f(g)

)
g∈G

where f : G→ C satisfies a functional equation f(gk) = ϕ(k)f(g) for
some Dirichlet character mod m.

Principal vectors are of this form, but satisfy the functional equation
only on some prime subgraph of G, and are zero on the complement.
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Proof of the lemma: Multiplying T with f we get

∀g ∈ G : (Tf)g =
∑
h∈G

tghf(h) =
∑
h∈G

∞∑
k=1

[k]
k

∑
ab=k

µ(a) 1[gb = h]f(h)︸ ︷︷ ︸
selects f(gb)

=
∞∑
k=1

[k]
k

∑
ab=k

µ(a)f(gb) =
FEQ

∞∑
k=1

[k]
k

∑
ab=k

µ(a)ϕ(b)f(g) = λ · fg

for the eigenvalue

λ = λϕ =
∞∑
k=1

[k]
k

∑
ab=k

µ(a)ϕ(b) =
∏
p

[1]− 1
p [p]

[1]− ϕ(p)
p [p]

which is always a 1-unit of Q.
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For the theorem, it remains to show that the principal f form a basis.

We use the following enumeration argument:

A prime subgraph S containing an element g of order m satisfies
S = {gk : gcd(k,m) = 1}, so it has precisely φ(m) vertices.

For each every S, we fix a vertex gS ∈ S and put f(gS) = 1. Each
of the φ(m) Dirichlet characters mod m then defines the function f
on the subgraph by the functional equation, and we put f(g) = 0 for
g /∈ S.

We obtain for every subgraph S precisely |S| = φ(m) principal
vectors, so in total we get |G| =

∑
|S| principal vectors. There

cannot be more.

These functions f are linearly independent in Qn. This is obvious if
a selection of them is defined on different subgraphs, otherwise we
use that different Dirichlet characters on the same group are linearly
independent.
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Basic rule for every prime subgraph: Order of elements is modulus m,
number of elements is φ(m).

S = {0}: We have f(g) = 1 if g = 0 and f(g) = 0 otherwise.
Case m = 1, the eigenvalue is λ1 = [1].
S = {3}: We have f(g) = 1 if g = 3 and f(g) = 0 otherwise.
Case m = 2 and φ(m) = 1, eigenvalue is λ2 = 1− 1

2 [2].
S = {2, 4}: Here the functions

f1(g) =
{

1 if g = 2, 4
0 otherwise

, f2(g) =

 1 if g = 2
−1 if g = 4

0 otherwise

are associated to the two Dirichlet characters mod 3.

S = {1, 5}: Here the functions

f1(g) =
{

1 if g = 1, 5
0 otherwise

, f2(g) =

 1 if g = 1
−1 if g = 5

0 otherwise

are associated to the two Dirichlet characters mod 6.
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So we compute the arithmetic determinant det(T ) = det(Z/6Z) as
follows:

det(T ) = λ1 · λ2 · λ3λ
′
3 · λ6λ

′
6 .

For the decomposition matching, we have to select the principal
characters:

λ1 · λ2 · λ3 · λ6 = [1] ·
(

1− [2]
2

)
·
(

1− [3]
3

)
·
(

1− [2]
2

)(
1− [3]

3

)

=
(

1− [2]
2

)2

·
(

1− [3]
3

)2

times a complex constant (coming from the matrix block grouping
operations).
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Examples computed using a computer:

Isomorphism type det
{1} (trivial) [1]
C2 (cyclic) 2 · ([1]− 1

2 [2])
C4 (cyclic) 23 · ([1]− 1

2 [2])2

C8 (cyclic) 26 · ([1]− 1
2 [2])3

C3 (cyclic) 3 · ([1]− 1
3 [3])

C9 (cyclic) 33 · ([1]− 1
3 [3])2

C6 (cyclic) 2232 · ([1]− 1
2 [2])2 · ([1]− 1

3 [3])2

C12 (cyclic) 2633 · ([1]− 1
2 [2])4 · ([1]− 1

3 [3])3

C24 (cyclic) 21234 · ([1]− 1
2 [2])6 · ([1]− 1

3 [3])4

C2
2 (abelian) 25 · ([1]− 1

2 [2])3

C3
2 (abelian) 217 · ([1]− 1

2 [2])7

C4
2 (abelian) 249 · ([1]− 1

2 [2])15

C2 × C4 (abelian) 211 · ([1]− 1
2 [2])5

D8 (dihedral) 28 · ([1]− 1
2 [2])4

Q8 (quaternion) 28 · ([1]− 1
2 [2])4

A4 (alternating) 233 · ([1]− 1
2 [2]) · ([1]− 1

3 [3])
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Some side effects (computational aspect):

Determinants don’t get too complicated, for example the sporadic
Mathieu group M12 of 7920 elements has arithmetic determinant
(with respect to the decomposition matching)

c ·
(

[1]− [2]
2

)8

·
(

[1]− [3]
3

)2

·
(

[1]− [5]
5

)
·
(

[1]− [11]
11

)
.

Algorithm to compute det symbolically is quite simple and,
surprisingly, involves no linear algebra at all.

The algorithm sets up the generator graph of the group G, and for each
prime subgraph of elements of order n, adds the φ(n) Dirichlet characters
mod n to the list of eigenvalues.

The difficult part is to find those which belong to the chosen matching of
analytic and arithmetic functions.

For the matching subfield↔decomposition it is simple: Select finitely
supported eigenvalues, i.e. those belonging to principal characters.
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Some side effects (number theoretic aspect):

Matching exists and det(G) 6= 0 for every finite group G,
even if there is no number field satisfying G(K/Q) = G.

Finest possible matching associated to the unmodified extended
matrix exists, but what is its number theoretic interpretation? Some
L-function formed using arbitrary group functions instead of
characters, but the left hand side is no longer analytic, or is it?

Be careful: Topology of Q is quite weak, so
”
convergence of pole

locations“ should be treated with care. No problems if there is no
accumulation on the half plane Re(s) > 0,
but on the line Re(s) = 0 strange things happen...

Every discrete set is in the Q-span of P and vice versa: In a certain
sense Weil’s formula holds true for every set of numbers, and does
not depend on any number theoretic conditions,
but we loose the analytic properties of the right hand side.
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Some last remarks:

It’s a technique to relate analytic and arithmetic sides, it has to be
fitted to the problem at hand.

Chebyshev’s question remains open until someone comes up with the
zeros of L(s, χ). But then they will determine ψa,m(x) without error
term, GSH is not required. In some sense, the Q-linear independence
of the zeta functions is enough.

Concepts of arithmetic group determinants may have other uses: for
example an algorithm that decides if two groups are isomorphic.

.....thanks for your patience.
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