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The aim of this lecture is to explain what the main theorem of the article [2] says,
and to give an introduction to the formalism of Shimura varieties that is used in
this and the next two lectures.

The main motivation for the specific form of the main theorem of [2] comes from
an application to Wolfart’s work [3] on algebraicity of values of hyper-geometric
functions at algebraic arguments. So, in a way, one can say that this article was
written especially for this conference.

The following conjecture is named after Yves André and Frans Oort; the ter-
minology used in its statement and in the statement of the theorem following it
will be explained in the first 45 minutes of the lecture.

Conjecture 1 (André–Oort). Let (G, X) be a Shimura datum, K ⊂ G(Af ) a
compact open subgroup, and Z ⊂ ShK(G, X)C a closed algebraic subvariety that
contains a Zariski dense set of special points. Then Z is special, i.e., of Hodge
type.

The main theorem of [2] is the following.

Theorem 2. Let (G, X) be a Shimura datum, K ⊂ G(Af ) a compact open sub-
group, and Z ⊂ ShK(G, X)C a closed algebraic curve that contains an infinite
set Σ of special points. Let V be a finite dimensional faithful representation of G,
and, for all h ∈ X, let Vh be the corresponding Q-Hodge structure. For x = (h, g)
in Shk(G, X)(C) let [Vx] be the isomorphism class of Vh. Assume that all [Vx], for
x ranging through Σ, are equal. Then Z is special, i.e., of Hodge type.

As explained in the previous lecture by Gisbert Wüstholz, Theorem 2 fills a gap
in Wolfart’s proof that if a certain hyper-geometric function has algebraic values at
infinitely many algebraic arguments, then the monodromy group of that function
is arithmetic. It is important to note that, in Wolfart’s situation, the algebraic
points at which the algebraic values are taken are known to correspond to abelian
varieties with complex multiplication of a fixed type.

Wolfart’s arguments involve certain explicit families of abelian varieties with
certain types of endomorphisms, so one could think that the use of Shimura vari-
eties in this lecture should be limited to the moduli spaces of precisely these kinds
of abelian varieties. But there are at least two good reasons even in this case
to use the general terminology of Shimura varieties. The first reason is that we
get more flexibility: one can reduce the problem directly to the smallest Shimura
variety containing Z, and one can reduce to the case G = Gad (which, in terms
of moduli interpretations, is more complicated than one would like). The second
reason is that using the general formalism, as established by Deligne in [1], makes
the situation actually a lot simpler (although more technical, maybe); the essential
data are all encoded in the pair (G, X).
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Let us now begin our explanation of what the statement of Theorem 2 above
means. In this statement, G is a (connected) reductive linear algebraic group
over Q. We give two examples: GL2,Q and GSp2g,Q (symplectic similitudes).

The symbol X in the pair (G, X) is a G(R)-orbit in Hom(S, GR), the set of
morphisms of algebraic groups over R. Here S = ResC/RGm. Hence, for every
R-algebra A, one has S(A) = (C⊗R A)× = {( a −b

b a
) ∈ GL2(A)}.

In the example G = GL2,Q one can take X = H± = P1(C) − P1(R) =
GL2(R)/S(R).

The importance of S comes from its property that, for V a finite dimensional
R-vector space, to give a Hodge structure on V is the same as giving it an action
by S.

The pair (G, X) must satisfy the following three properties:

(1) ∀h ∈ X the Hodge structure on Lie(GR) is of type {(−1, 1), (0, 0), (1,−1)};
(2) for all h ∈ X: innh(i) is a Cartan involution of Gad

R , that is, the group
{g ∈ Gad(C) | h(i)gh(i)−1 = g} is compact;

(3) write Gad =
∏

i Gi with Gi simple, then for all i and all h ∈ X, the induced
morphism S→ Gi,R is not trivial.

These conditions assure: X has a unique complex structure such that every rep-
resentation V of GR gives a variation of R-HS on X; the connected components
of X are hermitian symmetric domains (notation: X+); π0(X) is finite, and G(Q)
acts transitively on it.

At this point, we know what (G, X) and Vh are.
The adèles. We let Af :=

∏′
p Qp = Q ⊗ Ẑ, and A := Af × R; both are topo-

logical Q-algebras, Ẑ is open in Af and has its own profinite topology. Then K
in Theorem 2 is a compact open subgroup of G(Af) (the topology on G(Af) is
obtained by embedding G as a closed subvariety of an affine N -space over Q, and
then restricting the topology of AN

f ). In the example G = GL2,Q one can take
a maximal compact subgroup GL2(Ẑ), or, more generally, for n ∈ Z non-zero,
ker(GL2(Ẑ)→ GL2(Z/nZ)).

For (G, X) and K as above, one then defines:

ShK(G, X)(C) := G(Q)\(X ×G(Af)/K).

The set G(Q)\(π0(X) × G(Af)/K) is finite; choosing representatives ([X+], gi)
shows that ShK(G, X)(C) =

∐
i Γi\X+, with the Γi = G(Q)[X+] ∩ giKg−1

i arith-
metic subgroups of G(Q). Baily and Borel have shown that ShK(G, X)(C) is, (log)
canonically, the complex analytic variety associated to a quasi-projective complex
algebraic variety ShK(G, X)C. For example, ShGSp2g(Ẑ)(GSp2g, H±

g )C is the moduli
space Ag,1,C for complex principally polarised abelian varieties of dimension g.

Varying K gives a projective system of ShK(G, X)C, with finite transition mor-
phisms. One defines Sh(G, X)C as the projective limit of this system; it is a
scheme, not locally of finite type, but say pro-algebraic. The reason to consider
this limit is that G(Af) acts on it, and one has, for K ⊂ G(Af) open compact:
ShK(G, X)C = (Sh(G, X)C)/K. The G(Af)-action also gives a nice description of
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Hecke correspondences. For K and K ′ open compact, and for g ∈ G(Af), one has a
correspondence Tg : ShK(G, X)C ← ShK∩gK′g−1(G, X)C → ShK′(G, X)C, induced
by the action of g on Sh(G, X)C.

Definition 3. Let (G, X) be a Shimura datum, and K ⊂ G(Af) a compact open
subgroup. A closed subvariety S of ShK(G, X)C is called special, or of Hodge
type, if there exists a Shimura datum (G′, X ′), a morphism f : G′ → G such that
for each h ∈ X ′ one has f ◦ h ∈ X, and an element g ∈ G(Af), such that S is an
irreducible component of the image of:

Sh(G′, X ′)C
f−→ Sh(G, X)C

·g−→ Sh(G, X)C
q−→ ShK(G, X)C,

where q denotes the quotient morphism. A point s in ShK(G, X)C is called special
if it is a zero-dimensional special subvariety.

For example, the special points in Ag,1,C are precisely the points that correspond
to abelian varieties of CM-type.

At this point of the talk, the statement of Theorem 2 makes sense. However, the
notion of Mumford-Tate group associated to a Q-HS helps to understand it better.
For (G, X) a Shimura datum and h ∈ X, one lets MT(h) be the smallest sub
algebraic group H of G such that h factors through HR; these MT(h) are reductive.
For P in ShK(G, X)C one then has an algebraic Q-group MT(P ) together with a
G(Q)-conjugacy class of embeddings in G. A point P is then special if and only
if MT(P ) is commutative, i.e., a torus. For Z a closed subvariety of ShK(G, X)C
there is then a generic Mumford-Tate group MT(Z) with the property that for
all P ∈ Z one has MT(P ) ⊂ MT(Z), with equality outside a countable union of
proper closed subvarieties of Z; the points P where equality occurs are called Hodge
generic. This MT(Z) gives us a description of the smallest special subvariety of
ShK(G, X)C containing Z.

We can now give a very short description of the proof of Theorem 2. Let S be
the connected component of ShK(G, X)C that contains Z. One first replaces the
ambient Shimura variety by the smallest one containing Z, i.e., Z is then Hodge
generic. The second step is to replace G by Gad. Then comes the difficult step,
where one invokes the help of Hecke and Galois. One manages to produce a Hecke
correspondence Tq on S such that all Tq + Tq−1-orbits in S are dense (for the
Archimedean topology), and such that TqZ = Z = Tq−1Z. Then, of course, Z = S
and Z is special. In order to get Z ⊂ TqZ one uses the Galois orbits of elements
in Σ: one can arrange for Z ∩ TqZ containing such a Galois orbit that is larger
than the degree allows if the intersection would be proper.
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