## List of lectures for the ProDoc-Workshop on $p$-adic periods Alpbach/Austria, July 18-23, 2010

This workshop is organized by G. Wüstholz (Chair), A. Kresch, C. Fuchs and with the special help of L. Berger (ENS Lyon) within the ProDoc module Arithmetic and Geometry. It takes place from July 18-23, 2010 in Alpbach, Austria.

## 1. Galois representations and cohomology

1.1. Galois representations. Definition, examples, semilinear $B$-reps and elements of $H^{1}\left(G_{K}, \mathrm{GL}_{d}(B)\right)$, see Ch 2 of [1].
1.2. Hilbert's theorem 90. See [15] or Ch 2 of [1].
1.3. $H^{i}\left(G_{K}, V\right)$. Recall their dimensions, vanishing for $i \geq 3$ and Tate duality, see [15]. No proofs.

## 2. Ramification of local fields

2.1. The ramification filtration and conductors. See [14] or [12] or Ch 3 of [1].
2.2. The field $\mathbf{C}_{p} . \mathbf{C}_{p}$ algebraically closed and complete, see Ch 3 of [1].
2.3. Ax-Sen-Tate's theorem. See Ch 3 of [1] or $\S 3$ of [6].

## 3. Witt vectors

3.1. Teichmüller lifts. See [14] or Ch 5 of [1].
3.2. Witt vectors. See [14] or Ch 5 of [1].
3.3. Witt vectors over valued rings. Optional - see Ch 5 of [1].
4. Cyclotomic extensions and the cohomology of $\mathbf{C}_{p}$
4.1. Regularity. Ch 8 of [1].
4.2. Tate's traces. Ch 8 of [1].
4.3. Cohomology of $\mathbf{C}_{p}$ and $\mathbf{C}_{p}(i)$. Ch 8 of [1]. The $H^{0}$ is needed but the $H^{1}$ is not as important.
4.4. $\mathbf{C}_{p}$-admissible characters. Sen's theorem: A character of $G_{K}$ is $\mathbf{C}_{p}$-admissible iff it is of the form $\mu \cdot \alpha$ where $\mu$ is unramified and $\alpha$ is finite. If $K=\mathbf{Q}_{p}$ this follows from the above but if $K \neq \mathbf{Q}_{p}$ it's much harder. The proof is in [13].

## 5. The rings $\widetilde{\mathbf{E}}^{+}$and $\widetilde{\mathbf{A}}^{+}$and $\widetilde{\mathbf{B}}^{+}$

5.1. Construction. Ch 9 of [1] or $\S 7$ of [6] (note that there $\widetilde{\mathbf{E}}^{+}$is denoted by $\mathcal{R}$ ) or [7] (same comment).
5.2. $\widetilde{\mathbf{E}}$ algebraically closed. Ch 9 of [1].
5.3. The action of $G_{\mathbf{Q}_{p}}$ on $\widetilde{\mathbf{E}}$. Optional - Ch 9 of [1].
5.4. $\widetilde{\mathbf{A}}^{+}, \widetilde{\mathbf{B}}^{+}$. Ch 9 of $[1]$ or $\S 7$ of $[6]$ (note that there $\widetilde{\mathbf{A}}^{+}$is denoted by $\mathbf{A}_{\text {inf }}$ ) or [7] (same comment).
5.5. $\theta$ on $K \otimes_{K_{0}} \widetilde{\mathbf{B}}^{+}$. Ch 15 of [1] or $\S 7$ of [6].

## 6. The field $\mathbf{B}_{\mathrm{dR}}$

6.1. Construction. Ch 15 of [1] or [7].
6.2. $\mathbf{B}_{\mathrm{dR}}^{G_{K}}$. Ch 15 of [1] or [7].
6.3. de Rham representations. See [8].

## 7. The Ring $\mathbf{B}_{\max }$

Fontaine constructs a ring $\mathbf{B}_{\text {cris }}$ in [7] but the closely related ring $\mathbf{B}_{\text {max }}$ has the same properties and is much better behaved.
7.1. Construction. See [7] or $\S 7$ of [6] or also Ch 14 of [1].
7.2. $K \otimes_{K_{0}} \mathbf{B}_{\max } \hookrightarrow \mathbf{B}_{\mathrm{dR}}$. See $\S 7$ of [6] or also Ch 15 of [1].
7.3. Computation of $\mathbf{B}_{\max }^{\varphi=\lambda} \cap \mathrm{Fil}^{h} \mathbf{B}_{\mathrm{dR}}$. See $\S 8$ of [6] or also Ch 16 of [1].

## 8. Formal groups

8.1. Formal groups. See [12].
8.2. Differentials, logarithm. See [12].
8.3. Cartier dual, de Rham cohomology. Optional.

## 9. Lubin-Tate modules and class field theory

9.1. Lubin-Tate modules. See [12].
9.2. Tate modules of Lubin-Tate modules. See [12].
9.3. Class field theory. See [12].
10. Filtered $\varphi$-modules and crystalline representations
10.1. Filtered $\varphi$-modules. See [8].
10.2. $t_{H}$ and $t_{N}$, admissible objects. See [8] or also Ch 16 of [1].
10.3. Crystalline representations. See [8] or also Ch 16 of [1].
10.4. Examples from geometry (no proofs). See [8], and mention the FontaineMazur conjecture(s).

## 11. Bloch-Kato's exponential

11.1. The fundamental exact sequence. See $\S 8$ of [6] or also [5] or [11].
11.2. Bloch-Kato's exponential. See [3] or [11].
11.3. Interpretation for formal groups and Kummer theory. See 3.10 of [3].
11.4. Dimensions of the $H_{*}^{1}(K, V)$. Optional - see [11].

## 12. Periods of Lubin-Tate modules

12.1. Colmez' construction of periods. See $\S 8$ of [6]. It is not really said but it is the case that the element $t_{E}$ which he constructs is a period for $T_{p} G$ where $G$ is the corresponding Lubin-Tate module.
12.2. $\mathrm{D}_{\text {cris }}\left(T_{p} G\right)$ for a Lubin-Tate module. Follows from the above, $\mathrm{D}_{\text {cris }}\left(T_{p} G\right)=$ $\oplus_{k=0}^{d-1} E \cdot \varphi^{k}\left(t_{E}\right)$.
12.3. Transcendence degree of the periods. The action of Galois should allow one to compute the tr degree of $\overline{\mathbf{Q}}_{p}\left(\left(\varphi^{k}\left(t_{E}\right)\right)_{k=0}^{d-1}\right)$ inside $\mathbf{B}_{\mathrm{dR}}$.

## 13. The period pairing

### 13.1. The pairing $T_{p} G \times H_{\mathrm{dR}}^{1}(G) \rightarrow \mathbf{B}_{\mathrm{dR}}^{+}$for formal groups. See [4].

### 13.2. Elliptic curves and abelian varieties. See [4].

## Course notes and articles

There are online course notes by Berger and by Colmez as well as their articles and a book by Fontaine and Ouyang here:

- http://www.umpa.ens-lyon.fr/~lberger/publications.html
- http://www.umpa.ens-lyon.fr/~1berger/ihp2010.html
- http://www.math.jussieu.fr/~colmez/publications.html
- http://www.math.jussieu.fr/~colmez/Enseignement.html
- http://www.math.u-psud.fr/~fontaine/recherche.html

The numbering of $\S$ in [6] refers to the version on Colmez' webpage.

## References

[1] L. Berger, Galois representations and $(\varphi, \Gamma)$-modules, online notes.
[2] L. Berger, An introduction to the theory of $p$-adic representations.
[3] S. Bloch and K. Kato, $L$-functions and Tamagawa numbers of motives.
[4] P. Colmez, Périodes $p$-adiques des variétés abéliennes.
[5] P. Colmez, Théorie d'Iwasawa des représentations de de Rham d'un corps local.
[6] P. Colmez, Espaces de Banach de dimension finie.
[7] J-M. Fontaine, Le corps des périodes $p$-adiques.
[8] J-M. Fontaine, Représentations $p$-adiques semi-stables.
[9] J-M. Fontaine, Arithmétique des représentations galoisiennes $p$-adiques.
[10] J-M. Fontaine and Y. Ouyang, Theory of $p$-adic Galois Representations, online manuscript.
[11] J. Nekovar, $p$-adic height pairings.
[12] J. Neukirch, Algebraic number theory.
[13] S. Sen, Lie algebras of Galois groups arising from Hodge-Tate modules.
[14] J-P. Serre, Corps locaux.
[15] J-P. Serre, Cohomologie galoisienne.
[16] F. Urfels, Fonctions $L p$-adiques et variétés abéliennes à multiplication complexe, $P h D$ thesis.

