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Roughly, periods are complex numbers of the form
∫

Z

ω

where ω is a closed algebraic differential form on an algebraic variety X over
Q (or maybe Q̄, maybe a differential form with log poles) and Z ⊂ X(C) is a
compact real submanifolds (maybe with boundary on an algebraic subvariety
D ⊂ X). These numbers have very interesting properties from the point of view
of number theory. In particular, there is a long history of investigation into their
transcendence properties. For example,

∫

S1

dz

z
= 2πi

is a period number, which was shown to be transcendental by Lindemann
in 1882.

In this summer school we are going to concentrate on the formal properties of
the set of all periods, following the ideas of Kontsevich [Ko]. The main reference
will be [HMS] by Huber and Müller-Stach. Many basic details can be found in
[Frh].

The notion of period is generalized to all values of the integration pairing
between (relative) de Rham cohomology and (relative) singular homology. The
period conjecture in the formulation of Kontsevich says that the only relations
between these periods are the obvious one: induced by linearity, functoriality
and boundary maps in long exact sequences. He makes this precise by intro-
ducing the notion of formal periods, subject to only these relations. The ring P

of these formal periods (and hence conjecturally the set of periods) has a strong
structural property:

Theorem:(Nori, [Ko]) SpecP is a torsor under the motivic Galois group.

The aim of the summer school is to introduce all words in this Theorem and
explain its proof as given in [HMS].

The first three section of the program are independent of each other. Sec-
tion 4 relies heavily on section 3, to some extent on section 2, and a bit on
section 1.
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Speakers of any given section are encouraged to discuss among each other
and shift material from one talk to the other if they feel this would be more
suitable.

1 Classical periods

This section is meant as an unsystematic tour around examples of periods and
transcendence results.

1.1 periods for curves: explicit examples, classical transcendence results

1.2 Kontsevich-Zagier periods: definition and examples, [KoZ], [Frh] 5.3,
Section 8.

2 Cohomology

A series of talks leading to the definition of periods as values of the pairing
between relative singular homology and de Rham cohomology

2.1 singular cohomology: definition of singular cohomology for pairs of
topological spaces. The spaces that we need are the analytifications of
algebraic varieties, in particular CW -complexes. Properties of singular
cohomology: long exact sequence relative singular cohomology of a triple
X ⊃ Y ⊃ Z with proof; Künneth formula, Poincaré duality for singular
cohomology of compact manifolds; singular cohomology can be computed
by C∞-chains; universal coefficient theorem (case of fields suffices). Give
as many proofs as time allows. See [BT, W].

2.2 singular cohomology as sheaf cohomology: define sheaf cohomology
on general topological spaces. Then concentrate on our case: analytifica-
tion of algebraic varieties. State that singular cohomology with coefficients
in an abelian group A can be computed as sheaf cohomology with coef-
ficients in the constant sheaf A. Give a proof in the case of manifolds.
Then extend the result to relative cohomology, with our without proof.
The relationabstract is as follows. Let X be a complex analytic space,
D ⊂ X a closed subspace with open complement j : U → X. Then

Hi(X, j!A) = Hi(X,D;A)

where the left hand side is sheaf cohomology and j! is the extension by
zero, i.e., the sheafification of the presheaf

V 7→

{

A V ⊂ U

0 else
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If you want to give a proof: the result follows easily by taking the long
exact sequence for the short exact sequence of sheaves on X

0 → j!A → A → i∗A → 0

(i : D → X the closed embedding).

2.3 Nori’s basic lemma: Formulate and prove Nori’s basis lemma.

Theorem: Let X be an affine variety over Q of dimension d, D ( X a
closed subvariety. Then there is a closed subvariety D′ ( X containing D

such that
Hi(X(C), D′(C);Q) = 0 i 6= d

This talk is more difficult than the previous ones. It needs some algebraic
geometry (blow-ups, divisors with normal crossings) and good grasp of
singular cohomology. E.g. the proof needs a Poincare duality statement
for relative singular cohomology of non-compact spaces which can best be
understood by Verdier duality between j! and j∗. The reference is a sketch
in talks by Nori [N], [N1]. There is an alternative proof by Beilinson in
the language of perverse sheaves [B]. This does not seem suitable for our
summer school.

2.4 de Rham cohomology: Define de Rham cohomology for complex mani-
folds as hypercohomology of the complex of holomorphic differential forms.
Define de Rham cohomology for smooth algebraic varieties (over a field k

of characteristic 0) as hypercohomology of the complex of algebraic differ-
ential forms. We want to understand that for a smooth projective variety
X over Q, there is a natural isomorphism:

Hi
dR(X)⊗Q C ∼= Hi(X(C),Q)⊗ C

This is called the period isomorphism. The argument is a concatenation
of properties of de Rham cohomology that we need to explain:

• base change formula for the change of ground field; this allows to
pass from varieties over Q to varieties over C

• GAGA, ie., the comparison between algebraic de Rham cohomology
over C with holomorphic de Rham cohomology. Using the hypercoho-
mology spectral sequence this reduced to the case of coherent sheaves
and the comparison between algebraic and holomorphic differential
forms.

• Formulate the holomorphic Poincare lemma and deduce that singular
cohomology with coefficients in C agrees with holomorphic de Rham
cohomology

• use the universal coefficient theorem to compare with singular coho-
mology with Q-coefficients.
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The details are explained quite nicely in [Frh] Section 2–4. Define periods
of X as the Q-span of the matrix entries of this isomorphism in rational
bases on both sides (compare p-periods in [Frh]).

2.5 relative de Rham cohomology: We want to extend the last talk to the
relative setting. For a pair X and a closed subvariety D, we need relative
de Rham cohomology Hi

dR(X,D) such that

· · · → Hi(X,D) → Hi
dR(X) → Hi(D) → Hi+1(X,D) → . . .

is a long exact sequence compatible under the period isomorphism. Define
periods of (X,D) as in the last talk.

We concentrate on a special case X smooth over Q. First consider the
case when D is also smooth. Then

Hi
dR(X,D) = Hi (X,Cone (ΩX → i∗ΩD) [−1])

has the correct property. More generally, let D ⊂ X a strict divisor with
normal crossings, ie., D =

⋃

i=1
Di and all Di are smooth subvarieties of

codimension 1 and moreover all intersections
⋂

i∈I

Di I ⊂ {1, . . . , n}

are smooth. Let D̃ be the Chech complex of the finite cover
∐

Di → D.
Explicitly, let

D̃m =
∐

1≤i0,...,im∈≤n

m
⋂

j=0

Dij

In particular, D̃0 =
∐n

i=1
Di and then

D̃m = D̃0 ×D D̃0 ×D · · · ×D D̃0 m+ 1 factors

There are natural boundary maps

∂i : D̃m → D̃m−1

induced by projection away from the i-th coordinate.

Let π : Dm → X be the natural projection map. It is finite. Consider the
double complex

π∗ΩD̃0
→ π∗ΩD̃1

→ · · · → π∗ΩD̃n

with boundary maps the alterning sum of the maps induced by the ∂i. We
put

ΩD = totπ∗Ω
∗

D̃∗

the total complex of this double complex. Then

Hi
dR(D) = Hi(X,ΩD) Hi

dR(X,D) = Hi (X,Cone (ΩX → i∗ΩD) [−1])

Note that from a combinatorial point of view this is the same structure as
the sheafification of the Chech-complex of an open cover.

See [Frh] Section 3.
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3 Tannaka Categories

This section is formal algebra or representation theory. The only algebraic
geometry that enters is the appearance of affine algebraic groups.

3.1 Tannaka duality: Introduce the notion of tensor categories, duality,
and fibre functors. Define neutral Tannakian categories. Define algebraic
groups and Hopf algebras. We are only going to need the affine case. In
this context the world algebraic means finite dimensional variety. We are
also going to need pro-algebraic groups: those which are projective limits
of algebraic ones. Equivalently, the Hopf algebras are direct limit of finite
dimensional Hopf algebras. A good example is the multiplicative group
Gm = Speck[T, T−1].

State the main theorem of Tannaka theory without proof: Every neutral
Tannaka category is equivalent to the category of representations of a pro-
algebraic group. This group is called the Tannaka dual of the category.
A good running example is the category of graded vector spaces. It’s
Tannaka dual is Gm. Be careful about the definition of the tensor product!
Use the definition that makes the forgetful functor to vector spaces a fibre
functor.

The main reference for this talk is [DM].

3.2 Nori’s diagram category: A diagram is an oriented graph. A repre-
sentation assigns to every vertex a vector space and to every edge a linear
map. Nori’s theorem asserts that there is a universal abelian category
attached to this situation. The category is equivalent to the category of
comodules of a certain coalgebra. State the result precisely and give a
sketch of proof. [vW] (von Wangenheim)

3.3 multiplicative structures and localization: Our next aim is to put a
tensor structure on the diagram category of talk 3.2 or equivalently turn
A into a bialgebra. Also explain briefly the notion of localization of a
diagram and its effect on the bialgebra. [HMS] Appendix B.

3.4 Nori’s rigidity criterion: We now want to establish duality on a ten-
sor category or equivalently turn A into a Hopf algebra. Follow [HMS].
This talk needs a speaker comfortable with working with algebraic groups.
[HMS] Appendix C.

3.5 pairs of representations: When given two rather than one representa-
tions of the diagram category, their comparison is measured in a formal
period coalgebra. [HMS] 2.1-2.2, 2.4-2.6

4 Nori motives

This section brings together the results from the previous two: Define a partic-
ular diagram using pairs of algebraic varieties and a particular representation
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via relative singular cohomology. A survey of the theory can be found in [Le].

4.1 diagrams of pairs: Define the diagrams of pairs, good pairs and very
good pairs: vertices are triples (X,D, i) with i ∈ Z, X an algebraic vari-
ety over Q and D a closed subvariety; edges are induced by functoriality
and boundary maps for triples. [HMS] Defn. 1.1 Singular cohomology
and de Rham cohomology are representations (use talk 2.5). Define the
category of Nori motives as its diagram category with respect to singular
cohomology [HMS] Defn. 1.3. Explain why de Rham cohomology extends
to all Nori motives using [HMS] Lemma 3.1. Define the formal period
algebra [HMS] 2.4 (you do not know that it is an algebra). Define period

numbers as the image of these under the evaluation map to C. This talk
uses 3.2 and 2.5. Mathematically, there is nothing complicated going on.
The difficulty will be skipping around the various chapters and reading
things out of order. If there is not enough material for a full talk, the next
speaker could use some help.

4.2 yoga of diagrams: We want to define a tensor product on Nori motives.
This is easily done on the subdiagram of good pairs. Explain using the
basic lemma that the diagrams of pairs, good pairs and very good pairs
define the same category. [HMS] Cor 1.6, Cor. 1.7, and App. D Formulate
that the diagram of good pairs has a multiplicative representation [HMS]
Thm 1.5 b)c). Also state Cor. 1.9.

This talk uses talk 3.3. The speaker should have some experience with
cohomology.

4.3 rigidity: Apply Nori’s rigidity criterion to the category of Nori motives
(talk 3.4) We now have established that Nori motives are a neutral Tan-
naka category. Define the motivic Galois group as its Tannaka dual. [HMS]
1.10-1.13.

This talk uses talk 3.4 and some ideas from the proof of the basic lemma
(talk 2.3). The speaker should have some experience with cohomology of
algebraic varieties.

4.4 torsors: A torsor in our setting is a pro-algebraic group operating on some
pro-algebraic scheme (projective limit of varieties of finite type) such that
the operation is simply transitive on C-values points. This is an example
of a torsor for the flat topology.

If time allows, discuss torsors abstractly [HMS] Appendix A and in the
context of Tannaka duality [DM], [HMS] 3.2-3.3, 3.5. Present [HMS]
Cor. 3.4. Apply the general theory to Nori motives with fibre functors de
Rham cohomology, singular cohomology. Explain the proof of the main
theorem and its consequences for period numbers. [HMS] 2.8., 2.10-2.12.

Mathematically, this talk is simpler than the last two, but the speaker
needs to have an overview about what was going on from beginng to end.
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