
MULTIPLE ZETA VALUES

JOSEPH AYOUB AND SERGEY GORCHINSKIY

The goal of this workshop, to be held in the beautiful Alpbach, 2–7 September 2012,
is to study the motivic approach to multiple zeta values (MZV’s) including the recent
advances due to Francis Brown. Basically, we will follow the presentation of Deligne [7].
We also refer to the foundational paper [6] for many preliminary facts concerning the
motivic fundamental group of P1 without three points and the appearance of MZV’s in
this context.

The program consists of 13 talks by 90 minutes. Each talk is provided with a detailed
plan and description. All statements are expected to be proved or at least explained if
the converse is not mentioned. For most of them, hints and ideas can be found in the
text below as well as in the cited papers. The speakers of the workshop are urged to
start preparing their talks as soon as possible. The preparation assumes a creative work
with making sort of exercises and compiling various sources and melting them under
common notation and concepts of the workshop. The division of talks is tentative, and
the speakers of adjacent talks can exchange some of the material to be covered.

We assume familiarity with the following notions: fundamental groups, path spaces,
filtered vector spaces, Betti cohomology, (algebraic) de Rham cohomology, mixed Hodge
structures, periods, linear algebraic groups (mostly unipotent), Lie algebras, Hopf alge-
bras, dg-algebras, total complexes of bicomplexes. Some familiarity with simplicial and
cosimplicial objects, sheaves and local systems will be certainly helpful. The difficulty
of most talks is rather conceptual than technical.

In case help is needed, everybody is welcome to contact:
Joseph Ayoub: joseph.ayoub@math.uzh.ch
Sergey Gorchinskiy: gorchins@mi.ras.ru
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Sunday. Introduction

1. Introduction to multiple zeta values

This talk contains an introduction to MZV’s, a discussion of their general properties,
and the statement of conjectures and results about MZV’s that will be discussed during
the workshop.

Definition: For a sequence of positive integers n̄ = (n1, . . . , nk), put

ζ(n̄) :=
∑

i1>...>ik>0

1

in1
1 . . . ink

k

.

This series converges iff n1 ≥ 2. A weight of ζ(n̄) is |n̄| := n1 + . . . + nk. The Q-vector
space Z ⊂ R generated by MZV’s is filtered by weight.

Stuffle relations: The ∗-product between sequences, stuffle relations. Corollary: Z is
a filtered Q-algebra. Example: ζ(2) · ζ(2) = 2ζ(2, 2) + ζ(4).

Shuffle relations: Bijection between sequences n̄ with n1 > 2 and words W (n̄) in 0
and 1 that start by 0 and end by 1. The group of shuffles, the shuffle product between
sequences. Shuffle relations (without proof). Example: ζ(2) · ζ(2) = 2ζ(2, 2) + 4ζ(3, 1).

Regularized relations: Statement (without proof). Example: ζ(3) = ζ(2, 1).

Conjectures: All relations between MZV’s are homogenous. Zagier’s conjecture: di-
mensions dn of the adjoint quotients of Z satisfy dn = dn−2 +dn−3. The ideal of relations
between MZV’s is generated by the above three sets of relations. Explicit examples:
d0, . . . , d4.

Statement of main results: Goncharov–Terasoma’s theorem: dn 6 dn−2 + dn−3.
Brown’s theorem: all MZV’s are linear combinations of ζ(n̄), where ni ∈ {2, 3}.
References: [1, §§25.1, 25.2], [15, §§1, 8 ,10].
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Monday. Chen’s theorem

2. Iterated integrals

This talk presents MZV’s as iterated integrals. As an application, the shuffle relations
are obtained. Iterated integrals are interpreted as periods of certain relative cohomology
and in terms of monodromy of a unipotent connection. At the end, one states Chen’s
theorem.

Definition: For I := [0, 1], consider the simplex σn ⊂ In given by

σn := {(t1, . . . , tn)|1 ≥ t1 ≥ . . . ≥ tn ≥ 0} .

For a smooth connected manifold M , a (piecewise) smooth path γ : I → M , and a
collection of complex valued smooth 1-forms ω̄ := (ω1 . . . ωn) on M , put∫

γ

ω̄ :=

∫

σn

(γn)∗(ω1 £ . . . £ ωn) ,

where £ denotes the exterior product of forms on Mn. Explicit description in terms of
functions fi on I such that γ∗(ωi) = fidt.

MZV’s as iterated integrals: Put M = P1(C) r {0, 1,∞}, ω0 := dz
z
, ω1 := dz

1−z
.

Define ω̄(n̄) as a sequence of ω0 and ω1 encoded by the word W (n̄) from Talk 1. For
a path γ and 0 < ε ¿ 1, by γε denote the segment of γ that starts at γ(ε) and ends
at γ(1 − ε). By dch denote the real interval [0, 1] considered as a path from 0 to 1
on P1(C). Then there is an equality

ζ(n̄) = lim
ε→ 0

∫

dchε

ω̄(n̄) .

Basic properties of iterated integrals: Product of integrals:∫

γ

ω̄ ·
∫

γ

ω̄′ =
∑

τ

∫

γ

τ(ω̄ω̄′) ,

where τ runs over shuffles. Composition of paths:
∫

γ◦γ′
ω̄ =

n∑
i=0

∫

γ

ω1 . . . ωi ·
∫

γ′
ωi+1 . . . ωn.

The proof uses decompositions of (products of) the simplices σn. Corollary: shuffle
relations between MZV’s.

Differential of functions:∫

γ

(df)ω1 . . . ωn =

∫

γ

(fω1)ω2 . . . ωn − f(a)

∫

γ

ω1 . . . ωn ,

∫

γ

ω1 . . . ωi−1(df)ωi . . . ωn =

∫

γ

ω1 . . . ωi−1(fωi) . . . ωn −
∫

γ

ω1 . . . (fωi−1)ωi . . . ωn ,

∫

γ

ω1 . . . ωn(df) = f(b)

∫

γ

ω1 . . . ωn −
∫

γ

ω1 . . . ωn−1(fωn) .

The proof uses Stokes theorem.
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Taking the inverse of the path:∫

γ

ω1 . . . ωn = (−1)n

∫

γ−1

ωn . . . ω1 .

Corollary: duality relations between MZV’s (in particular, ζ(3) = ζ(2, 1)).

Cohomological interpretation: Given points a and b on M , let Zn
a,b ⊂ Mn, n > 1,

be the closed subset consisting of n-tuples (x1, . . . , xn) such that one of the following
equalities is satisfied: a = x1, x1 = x2, . . . , xn−1 = xn, or xn = b. If a = b, then for
short put Zn

a := Zn
a,b. To a path γ : I → M with γ(0) = a and γ(1) = b, one associates

a relative homology class in Hn(Mn, Zn
a,b) by restricting the map γn : In → Mn to the

simplex σn ⊂ In. This defines a linear map

c̃n : Q[π1(M ; a, b)] → Qa,b ⊕Hn(Mn, Zn
a,b), n > 1 ,

where π1(M ; a, b) denotes the set of homotopy classes of paths from a to b, Qa,b := 0 for
a 6= b, and the map to Qa,a := Q is the augmentation.

Assume that a collection of closed 1-forms ω̄ = (ω1 . . . ωn) on M satisfies ωi ∧ ωi+1 = 0
for 1 6 i 6 n− 1. Then the exterior product of ωi’s defines a relative cohomology class
in Hn(Mn, Zn

a,b;C) and there is an equality
∫

γ

ω̄ = 〈[ω1 £ . . . £ ωn], c̃n(γ)〉 .

Corollary: for ω̄ as above, the iterated integral
∫

γ
ω̄ is well-defined for the class of γ

in π1(M ; a, b).

Monodromy interpretation: Assuming that ω̄ is as in the previous section, consider
a unipotent flat connection on the rank n + 1 complex trivial bundle over M given by
d−N , where a nilpotent matrix of 1-forms N is defined as follows:

N :=




0 ω1 0 . . . 0
0 0 ω2 . . . 0

... · · · 0
0 0 0 . . . ωn

0 0 0 . . . 0




Then the monodromy along γ of this connection is equal to the (finite) sum

Id +

∫

γ

N +

∫

γ

N⊗2 + . . . +

∫

γ

N⊗n + . . . ,

where N⊗n denotes the power of the matrix N that involves the tensor product between
forms (which has nothing to do with a tensor product of operators) and, by definition,∫

γ
η1 ⊗ . . . ⊗ ηm :=

∫
γ
η1 . . . ηm. This gives another proof of the composition of paths

formula. Note that the analogous is true for any strict upper-triangular matrix N of
1-forms.

Chen’s theorem: Given loops γ1 . . . , γn+1 based at a ∈ M and a path γ from a to b,
one has the vanishing

c̃n

(
(1− γ1) ◦ . . . ◦ (1− γn+1) ◦ γ

)
= 0



MULTIPLE ZETA VALUES 5

in Hn(Mn, Zn
a,b). The proof uses decomposition of the simplex σn into products of smaller

simplices (similar to the proof of the composition of paths relation) and the inclusion-
exclusion principle. Corollary: the map c̃n factors through a map

cn : Q[π1(M ; a, b)]/In+1Q[π1(M ; a, b)] → Qa,b ⊕Hn(Mn, Zn
a,b), n > 1 ,

where I ⊂ Q[π1(M ; a)] is the augmentation ideal. Chen’s theorem states that cn is an
isomorphism (without proof).

References: [3, §§2.2, 3.3], [7, §1], [15, §7], [17, §6].

3. Pro-unipotent completion

The talk introduces the pro-unipotent completion (also known as Malcev comple-
tion) Γun of an abstract group Γ (assumed, for simplicity, to be finitely generated). This
interprets Chen’s theorem from Talk 2 as a calculation of the pro-unipotent completion
of the fundamental group. The case of a free group is considered in more detail.

Unipotent groups and Hopf algebras: Definition of a pro-unipotent algebraic group
scheme over a field (for short, a pro-unipotent group): every representation has an
increasing unipotent filtration. Explicit description of the unipotent filtration on the
Hopf algebra as the regular representation of the pro-unipotent group. Definition of
a pro-unipotent group in terms of this filtration. Example: Spec T (V ), where V is a
vector space and T (V ) := ⊕n>0V

⊗n with product given by shuffles and coproduct given
by deconcatenation.

Equivalence between unipotent algebraic groups and finite-dimensional nilpotent Lie
algebras over a field of characteristic zero: given g, put O(G) to be the topologically dual
to the completion U(g)∧ of the universal enveloping algebra U(g) by the augmentation
ideal. It follows that elements in G correspond to group-like elements in U(g)∧.

The abelianization G/[G,G] of a unipotent algebraic group G is the additive group
given by the k-vector space g/[g, g]. The latter vector space is dual to gr1

NO(G), where N
denotes the unipotent filtration (also, one has gr1

NO(G) ' H1(G, k)). The (iterated)
coproduct map defines a canonical embedding of graded Hopf algebras

gr•NO(G) ⊂ T
(
gr1

NO(G)
)
.

For any G-torsor P the scheme Spec
(
gr•NO(P )

)
is a (canonically) trivial torsor under

Spec
(
gr•NO(G)

)
, whence one also has an embedding of graded algebras

gr•NO(P ) ⊂ T
(
gr1

NO(G)
)
.

All the above has a version for pro-unipotent groups, which involves also a projective
limit structure on g.

Pro-unipotent completion: Definition of Γun as a solution of the universal problem
for group homomorphisms Γ → U(Q), where U is a pro-unipotent group over Q (in
particular, Γun is a pro-unipotent group over Q).

By Quillen, the Hopf algebra of regular functions on Γun is given by the formula

O(Γun) = lim−→
n

(Q[Γ]/In)∨ ,
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where I ⊂ Q[Γ] is the augmentation ideal and the product on the right hand side
is dual to the map uniquely defined by γ 7→ 1 ⊗ γ + γ ⊗ 1. In concrete way Γun

may be given using the torsion free lower central series and explicit set of coordinates
(this is probably the original construction of Malcev!). Correspondence between finite-
dimensional representations of Γun and unipotent finite-dimensional representations of Γ,
that is, representations of Γ that are extensions of trivial ones.

Given a torsor T under Γ, we obtain a torsor T un under Γun with O(T un) =
lim−→ (Q[T ]/InQ[T ])∨. The obtained filtration on O(T un) equals the unipotent filtration
induced by the action of Γun.

Interpretation of Chen’s theorem: The isomorphisms cn from Talk 2 induce a di-
rected system structure on Hn(Mn, Zn

a,b) and an isomorphism of vector spaces

c∨ : Qa,b ⊕ lim−→
n

Hn(Mn, Zn
a,b)

∼−→ O(
π1(M ; a, b)un

)
.

The case of a free group: Let Γ be the free group on r generators γ1, . . . , γr (this is the
fundamental group of P1 without several points and will be of fundamental importance
later). The Lie algebra of Γun is the completion of the free graded Lie algebra over Q
on generators e1, . . . , er in degree 1 by the lower central series. Its completed universal
enveloping algebra is Q〈〈e1, . . . , er〉〉, the algebra of formal power series in non-commuting
variables ei, with the coproduct uniquely defined by ∆(ei) = 1⊗ei+ei⊗1. It follows that
for any Q-algebra R, the group Γun(R) is the set of group-like elements in R〈〈e1, . . . , er〉〉.
This implies isomorphisms

lim←−
n

Q[Γ]/In ∼−→ Q〈〈e1, . . . , er〉〉, γi 7→ exp(ei) ,

O(Γun)
∼−→ T (V ) ,

where V is the dual to the Q-vector space spanned by the variables ei.

References: [6, App.], [7, §§2.1, 3.1], [12, §1]

4. Bar complex

Chen’s isomorphism c∨ from Talk 3 induces a (Hopf) algebra structure on the direct
limit Qa,b ⊕ lim−→Hn(Mn, Zn

a,b). The goal of this talk is to show how this structure can
be defined independently in terms of cohomology, which will lead later to additional
structures on the pro-unipotent completion of the fundamental group. The construction
is based on the bar complex. Its conceptual explanation involves the cosimplicial path
space, which is a combinatorial approximation to the path space with the topological
interval I being replaced by the simplicial interval ∆[1].

Definition: Given a dg-algebra A• over a field k and two morphisms of dg-algebras
a, b : A• → k, one defines the bar complex B(A•; a, b) using the ⊕-total complex of the
bicomplex

. . . → (A•)⊗n → . . . → (A•)⊗2 → A• → k → 0 ,



MULTIPLE ZETA VALUES 7

where the differential involves a, b, and multiplication in A•. If a = b, then for short put
B(A•; a) := B(A•; a, a). Deconcatenation defines a coproduct map

B(A•; a, c) → B(A•; a, b)⊗k B(A•; b, c) ,

which is a morphism of complexes. One also has a counit and a coinverse. A commutative
product on B(A•; a, b) is given by shuffles for commutative A• (there are signs involved!).
Example: if A• = k ⊕ V [−1] and a is the natural morphism, then B(A•; a) is T (V )
from Talk 3.

Reduced bar complex: Assume that A<0 = 0 and H0(A•) = k. Define the reduced
bar complex B(A•; a, b) as the quotient of B(A•; a, b) over the subcomplex spanned by
decomposable tensors such that one of the multiples has degree zero and their (total)
differentials. The reduced bar complex has also product and coproduct structures. Ex-
plicit description of the reduced bar complex (especially of its H0). The quotient map
B(A•; a, b) → B(A•; a, b) is a quasiisomorphism. To prove this one first uses a simplicial
structure on the bar complex and applies normalization taking quotient over constants.
Then one uses the quasiisomorphism A•/k → A•/(A0 → dA0).

Relation with iterated integrals: Let M be a smooth connected manifold, A•
M be

the complex valued de Rham complex (what follows is true for the real valued de Rham
complex as well). Two points a, b ∈ M define morphisms of dg-algebras from A•

M to C,
denoted similarly. Basic properties of iterated integrals from Talk 2 give a map

iter : Q[π1(M ; a, b)] → H0
(
B(A•

M ; a, b)
)∨

= H0
(
B(A•

M ; a, b)
)∨

,

γ 7→ {
ω1 ⊗ . . .⊗ ωn 7→

∫
γ
ω1 . . . ωn

}

and, dually, a morphism of algebras that respects coproducts

iter∨ : H0
(
B(A•

M ; a, b)
) → C⊗Q O

(
π1(M ; a, b)un

)
.

Comparison with relative cohomology: Let K•
n be the total complex of the following

truncation of the bar complex:

0 → (A•
M)⊗n → (A•

M)⊗(n−1) → . . . → (A•
M)⊗m → . . . → k → 0 .

In particular, B(A•
M) = lim−→K•

n.
By Künneth and the simplicial resolution of the boundary Zn

a,b, the relative cohomol-

ogy Ca,b ⊕ Hn(Mn, Zn
a,b;C) from Talk 2 are computed by the total complex K̃•

n of the
bicomplex

0 → (A•
M)⊗n →

n⊕
i=0

(A•
M)⊗(n−1) → . . . → ⊕

I

(A•
M)⊗m → . . . → k⊕(n+1) → 0 ,

where the m’th tensor powers are summed over all subsets I ⊂ {0, . . . , n} of n − m
elements.

Taking the sum defines a quasiisomorphism of complexes K̃•
n → K•

n (this is a particular
case of a general statement about simplicial objects in idempotent complete additive
categories, whose proof is not required). This implies that Chen’s theorem is equivalent
to the fact that iter∨ is an isomorphism.

Cosimplicial path space: This section is optional. Define the cosimplicial manifold

P •(M) := Hom(∆[1],M) .
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Explicitly, one has P n(M) = Mn+2, n > 0, with coboundary maps expressed in terms
of the diagonal map M → M × M . There is a natural morphism from P •(M) to the
constant cosimplicial manifold M × M . Given two points a, b ∈ M , one defines the
cosimplicial topological space P •(M ; a, b) to be its fiber at (a, b). By Künneth, there is
a canonical isomorphism

H i
(
P •(M ; a, b),C

) ' H i
(
B(A•

M ; a, b)
)
,

where cohomology of a cosimplicial manifold are defined using the ⊕-total complex of
the corresponding bicomplex. The isomorphism respects the product and coproduct
structures.

By |E•| := Hom(σ•, E•) denote the geometric realization of a cosimplicial topological
space E•, where σ• is the standard cosimplicial space formed by simplices σn and Hom
is taken in the category of cosimplicial topological spaces. One has that |P •(M ; a, b)|
is homeomorphic to the fiber of Hom(|∆[1]|,M) over (a, b) ∈ M × M . The latter is
homotopic to the usual path space P (M ; a, b), whose H0 is Q[π1(M ; a, b)]∨. With this,
Chen’s theorem states that the natural map

H0
(
P •(M ; a, b)

) → H0
(|P •(M ; a, b)|)

is injective and its image is identified with the subspace of linear functionals on
H0

(|P •(M ; a, b)|) = Q[π1(M ; a, b)] that vanish on InQ[π1(M ; a, b)] for a sufficiently
large n.

References: [6, §§3.7, 3.9, 3.10, 3.11], [9], [13, §8.3.3], [14, §§4, 5]
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Tuesday. Hodge structure on the fundamental group

5. Proof of Chen’s theorem

The talk consists in the proof of Chen’s theorem in the equivalent formulation
from Talk 4. One uses essentially the Riemann–Hilbert correspondence and the mon-
odromy interpretation of iterated integrals. An alternative proof of Chen’s theorem, due
to Beilinson, is reproduced in [6, §§3.4, 3.8].

Isomorphisms between Hopf algebras: We need to prove that the morphism of
algebras iter∨ from Talk 4 is an isomorphism. Since both algebras correspond to torsors
under Hopf algebras, it is enough to prove that the morphism of Hopf algebras

iter∨ : H0
(
B(A•

M ; a)
) → C⊗Q O

(
π1(M ; a)un

)

is an isomorphism. For short, put H(M ; a) := H0
(
B(A•

M ; a)
)
. By the definition of a

pro-unipotent completion, iter∨ induces a functor

Φ: Comod
(
H(M ; a)

) → Repun
(
π1(M ; a)

)
.

By a general statement about Hopf algebras (which is a part of the Tannakian formalism
from Talk 8), it is enough to show that Φ is an equivalence of categories.

Riemann–Hilbert correspondence: By Conn(M) denote the category of complex
vector bundles on M with a flat connection. One has the functor from Conn(M)
to Rep

(
π1(M ; a)

)
that sends (E,∇) to the fiber Ea at a with the monodromy represen-

tation. This is an equivalence of categories with a quasiinverse functor RH being con-
structed as follows. Given a finite-dimensional complex representation of π1(M ; a), let L
be the corresponding local system on M . The sheaf of sections E of E is then L⊗CA0

M ,
where A0

M denotes the sheaf of complex valued smooth functions on M . The connection
on E is induced by the de Rham differential d : A0

M → A1
M .

Unipotent connections: By Connun(M) denote the category of vector bundles with a
unipotent flat connection. Note that we have an equivalence of categories

RH : Repun
(
π1(M ; a)

) → Connun(M) .

Let (E,∇) be in Connun(M). Then E is a trivial bundle being an extension of trivial
bundles. Choose an isomorphism E ' Ea⊗CA0

M that induces an identity on the (closed)
fiber Ea at a. Then (E,∇) is uniquely defined by an element N ∈ EndC(Ea) ⊗C A1

M ,
where ∇ = d−N . Since ∇ is unipotent, N is strict upper-triangular in a suitable basis
in Ea. Therefore, N⊗n = 0 for a sufficiently large n, where, as in Talk 2, N⊗n involves the
usual product between operators in EndC(Ea) and the tensor products between forms.

From connections to comodules: Our aim is to construct a quasiinverse functor to Φ.
The monodromy interpretation of iterated integrals predicts the following construction.
For N as above, consider the (finite) sum

P := Id + N + N⊗2 + . . . + N⊗n + . . . ∈ EndC(Ea)⊗C B(A•
M ; a)0 .

The flatness condition on ∇ (that is, the equality dN = N ∧ N) implies that P is a
cocycle in the bar complex. Thus, we obtain the class

[P ] ∈ EndC(Ea)⊗C H(M ; a) .
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One checks directly that [P ] defines a comodule structure on Ea over H(M ; a).

Functoriality of the construction: Let f : (E,∇E) → (F,∇F ) be a morphism
in Connun(M). By fa : Ea → Fa denote the fiber of f at a. Since f commutes with ∇
(that is, NF · f − f ·NE = df), the following equality holds in EndC(Ea)⊗C B(A•

M ; a)0:

PF · fa − fa · PE = d

(∑
n>0

n∑
i=0

N⊗i
F ⊗ f ⊗N

⊗(n−i)
E

)
,

where d denotes the differential in the bar complex. This implies that the class [P ] does
not depend on the choice of a trivialization of E as above and one has the functor

Connun(M) → Comod
(
H(M ; a)

)
, (E,∇) 7→ (Ea, [P ]) .

Consider the composition of RH with this functor:

Ψ: Repun
(
π1(M ; a)

) → Comod
(
H(M ; a)

)
.

It follows from the monodromy interpretation of iterated integrals that Φ◦Ψ is isomorphic
to the identity.

Essential surjectivity of Ψ: Choose a decomposition A1
M = d(A0

M) ⊕ V . Then the
dg-algebra A•

0 → C 0→ V
d→ A2

M
d→ A3

M
d→ . . .

is a quasiisomorphic dg-subalgebra in A•
M . This implies that the corresponding bar

complexes are quasiisomorphic (it is important here that we use the ⊕-total complex),
whence H0

(
B(A•; a)

) ' H(M ; a).
On the other hand, by the explicit description of the reduced bar complex,

H0
(
B(A•; a)

)
is a Hopf subalgebra in T (V ). It follows from Talk 3 that any comod-

ule over T (V ) is given by a matrix of the form Id + N + N⊗2 + . . . where N is a strict
upper-triangular matrix with values in V . This implies that Ψ is essentially surjective.

Finally, by an abstract nonsense, the facts that Φ ◦Ψ ' Id, Ψ is essentially surjective,
and Φ is faithful imply that Ψ ◦ Φ ' Id.

6. Mixed Hodge structure on the fundamental group

The aim of this talk is to show that the (Hopf) algebra structure on the relative
cohomology group Qa,b ⊕ lim−→Hn(Mn, Zn

a,b) respects the mixed Hodge structure on it
when M is the set of complex points of an algebraic variety. The main idea is that
the bar complex from Talk 4 has a geometric origin. This allows to define a mixed
Hodge structure on the ring of regular functions on the pro-unipotent completion of the
fundamental group.

Algebraic geometry over a tensor category: Let C be a symmetric tensor category.
By Ind(C) denote the category of ind-objects in C, that is, directed systems of objects
in C. Following Deligne, one calls a C-affine scheme T an object in the opposite category
of the category of commutative algebras in Ind(C), that is, O(T ) is a commutative algebra
ind-object in C. Similarly, one can speak about C-affine algebraic groups (or groupoids),
etc. Given a symmetric tensor functor ω : C → Vect(k) over a field k, one obtains actual
affine schemes, affine algebraic groups, etc over k.
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Mixed Hodge structures: In what follows one fixes an embedding of fields k ⊂ C. By
a mixed Hodge structure over k we mean a rational mixed Hodge structure such that its
de Rham realization together with the Hodge and weight filtrations are defined over k.
Periods of mixed Hodge structures. Examples: cohomology Hn(X) (or homology) of an
algebraic variety X over k, relative cohomology Hn(X,Y ) (or homology) for a closed
subvariety Y ⊂ X over k, Q(0)H := H0(Spec(k)), Q(1)H := H2(P1) (its weight is −2
and its period is (2πi)−1). The category MH(k) of mixed Hodge structures over k is a
symmetric tensor abelian category. One has de Rham and Betti realization functors

ωdR : MH(k) → Vect(k), ωB : MH(k) → Vect(Q)

and a canonical comparison isomorphism comp : C⊗k ωdR
∼−→ C⊗Q ωB. A mixed Hodge

structure is of mixed Tate type if its weight adjoint quotients are direct sums of Q(n)H ,
n ∈ Z (by definition, Q(−1)H := Q(1)∨H). By MTH(k) denote the full subcategory
in MH(k) that consists of mixed Tate Hodge structure over k.

Geometric origin of the Hopf structure: The crucial remark is that the differ-
ential, the product, and the coproduct structures on the bar complex B(A•

M ; a, b) are
linear combinations of pull-backs along the diagonal map M → M ×M and the embed-
dings a, b : pt → M (see Talk 4). Similarly, the isomorphism between relative cohomol-
ogy Hn(Mn, Zn

a,b) and cohomology of the truncated bar complex is of geometric origin,
whence the directed system structure on Hn(Mn, Zn

a,b) is of geometric origin as well.

Mixed Hodge structure on the fundamental group: Let X be a smooth alge-
braic variety defined over k ⊂ C such that X(C) is connected, let a, b ∈ X(k), and let
M = X(C). Then Zn

a,b is the set of complex points of an algebraic subvariety Y n
a,b in Xn

over k. It follows from the above that Qa,b⊕Hn(Xn, Y n
a,b), n > 1, form a directed system

in the category MH(k). This defines mixed Hodge affine schemes π1(X; a, b)H together
with a groupoid structure in MH(k)

π1(X; a, b)H × π1(X; b, c)H → π1(X; a, c)H .

(An alternative short explanation is that O(
π1(X; a, b)H

)
is equal to H0 of the cosimpli-

cial path variety P •(X; a, b).)

De Rham and Betti and realizations: Applying ωdR to π1(X; a, b)H , one ob-
tains an affine scheme π1(X; a, b)dR ' Spec H0

(
B(A•

X ; a, b)
)

and a pro-unipotent group
π1(X; a)dR over k, where A•

X is a suitable RΓ of the algebraic de Rham complex of X.
Applying ωB, one obtains an affine scheme π1(X; a, b)B ' Spec H0

(
B(C•

X(C); a, b)
)

and

a pro-unipotent group π1(X; a)B over Q, where C•
X(C) is the singular cochain complex

of X(C) (notice that it has a commutative dg-algebra structure). By Chen’s theorem,

π1(X; a)B ' π1(X(C); a)un, π1(X; a, b)B ' π1(X(C); a, b)un .

In particular, there is a canonical map π1(X(C); a, b) → π1(X; a, b)B(Q).

Comparison isomorphism: It follows that there is a canonical comparison isomor-
phism

comp : C⊗k O (π1(X; a, b)dR)
∼−→ C⊗Q O (π1(X; a, b)B) .

Assume that a collection of closed algebraic 1-forms ω1, . . . , ωn on X over k satisfies
ωi ∧ ωi+1 = 0 for 1 6 i 6 n − 1. Then ω1 ⊗ . . . ⊗ ωn defines an algebraic function
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on π1(X; a, b)dR over k. Applying comp, we obtain a complex valued algebraic function
on π1(X; a, b)B. By construction, comp is induced by iter∨ from Talk 4, that is, we have

comp(ω1 ⊗ . . .⊗ ωn)(γ) =

∫

γ

ω1 . . . ωn

for any path γ from a to b.

Unipotent filtration: One has a well-defined unipotent filtration N onO(
π1(X; a, b)H

)
in the category MH(k) induced by the action of π1(X; a)H . It follows that
gr1

NO
(
π1(X; a, b)H

) ∼= H1(X), whence, by Talk 3, one has an embedding of graded

(Hopf) algebras gr•NO
(
π1(X; a, b)H

) ⊂ T
(
H1(X)

)
(both are ind-objects in MH(k)). In

particular, O(
π1(X; a, b)H

)
has non-negative weights.

Example: H1(X) is pure of weight 2 iff H1(X) ∼= Q(−1)⊕r iff H1(X̄,OX̄) = 0,
where X̄ is a (any) smooth compactification of X. In this case the weight filtration
on O(

π1(X; a, b)H

)
coincides with the unipotent filtration and O(

π1(X; a, b)H

)
is of

mixed Tate type.

References: [4, §12.1], [5, §7.8], [7, §§2, 5.3]

7. The case of P1 without several points

In this talk one applies the set-up of Talk 6 to the case of P1 without several points.
One shows that the corresponding mixed Hodge structure is of mixed Tate type. One
also considers tangential base points and relates the corresponding periods with MZV’s.

Mixed Hodge structure on the fundamental group: Let D ⊂ P1 be a reduced
divisor defined over k ⊂ C, |D(C)| = r+1, X = P1rD, and let a, b ∈ X(k). By Ω denote
the k-vector space of algebraic 1-forms on X with at most first order poles along D. In
particular, dimk(Ω) = r and Ω ' H1

dR(X). The de Rham complex A•
X is quasiisomorphic

to its subcomplex k⊕Ω[−1]. This shows that π1(X; a, b)dR does not depend on points a
and b and one has an isomorphism of (Hopf) algebras O(

π1(X; a, b)dR

) ' T (Ω). In
particular, the (Hopf) algebra O(π1(X; a, b)dR) is naturally graded. The weight filtration
is given by

W2nO
(
π1(X; a, b)dR

)
=

⊕
i6n

Ω⊗i

and the Hodge filtration is given by

F pO(
π1(X; a, b)dR

)
=

⊕
i>p

Ω⊗i .

By Talks 3 and 6, one has an isomorphism of (Hopf) algebras O(
π1(X; a, b)B

) ' T (V ),
where V is a Q-vector space of dimension r. The comparison isomorphism

comp : C⊗k T (Ω)
∼−→ C⊗Q T (V )

is encoded by iterated integrals as explained in Talk 6. Moreover, O(
π1(X; a, b)H

)
is of

mixed Tate type. To show this one either analyzes (relative) cohomology of Xn, or uses
results from the end of Talk 6.
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The case D = {0,∞}: One has Ω = dz
z
· k, π1(X; a)B does not depend on a be-

ing commutative, and π1(X; a)H
∼= T

(
Q(−1)H

)
. To deduce the last isomorphism one

computes explicitly the comparison isomorphism comp using the description of the map
Γ → Γun(Q), Γ = Z, from Talk 3 and the equation

∫

γ

ω⊗n =
1

n!

(∫
γ
ω
)n

.

In particular, π1(X; a)dR is the additive group Ga and the comparison isomorphism
identifies π1(X; a)B(Q) with 2πiQ ⊂ Ga(C). By abuse of notation, one denotes the
MH(k)-algebraic group that corresponds to T

(
Q(−1)H

)
also by Q(1)H .

Tangential base points: We continue with X = P1 r D (actually, what follows has
a version with P1 being replaced by any smooth projective curve over k). Given points
x, y ∈ D(k) and non-zero tangent vectors u ∈ TxP1, v ∈ TyP1, let π1(X(C); u, v) denote
the set of homotopy classes of (piecewise) smooth paths from x to y with the tangent
vector at x being u and at y being −v (we fix a coordinate on I = [0, 1]). One has a
canonical small counterclockwise loop γx ∈ π1(X(C); u) “almost around” x.

Given a complex vector bundle E on P1 and a unipotent connection ∇ on E with at
most first order poles along D, one defines a monodromy along γ ∈ π1(X(C); u, v) by
the regularization ∫

γ

∇ := lim
ε→ 0

εresy(∇) ◦
∫

γε

∇ ◦ ε−resx(∇) ,

where γε is defined as in Talk 2, one has res(d−N) := res(−N), and εU := exp(log(ε) ·U)
for a nilpotent matrix U (a local calculation shows that the limit exists). Example:∫

γx
∇ = exp(2πi · resx(∇)).

Mixed Hodge structure on the tangential fundamental group: Using the mon-
odromy interpretation of iterated integrals from Talk 2, one defines

∫
γ
ω1 . . . ωn and a

map

iter : Q[π1(X(C); u, v)] → C⊗k T (Ω)∨ ,

γ 7→ {
ω1 ⊗ . . .⊗ ωn 7→

∫
γ
ω1 . . . ωn

}
.

Explicitly, one has

∫

γ

ω1 . . . ωn = lim
ε→ 0

∑
06i6j6n

(−1)i

i!(n− j)!

i∏

l=1

resy(ωl)·
∫

γε

ωi+1 . . . ωi+j ·
n∏

l=j+1

resx(ωl)· log(ε)i+n−j .

The monodromy interpretation implies the composition of paths formula and the above
explicit description implies the product of integrals formula.

All the above has a version when one of the base points is an actual point in X(k). It
follows that for a ∈ X(k), iter induces a morphism of torsors

C×Q π1(X(C); a, v)un → C×k Spec T (Ω) ,

which respects the isomorphism of pro-unipotent groups

C×Q π1(X(C); a)un ' C×Q π1(X; a)B → C×k π1(X; a)dR ' C×k Spec T (Ω) .
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Therefore, this is an isomorphism and letting the weight filtration onO(
π1(X(C); a, v)un

)
to be the unipotent filtration, one obtains a torsor π1(X; a, v)H in MTH(k) un-
der π1(X; a)H . Further, taking products of torsors leads to mixed Tate Hodge affine
schemes π1(X; u, v)H together with a groupoid structure in MTH(k). In addition,
O(

π1(X; u, v)H

)
has non-negative weights.

It follows that the loop γx defines a morphism Q(1)H → π1(X; u)H of pro-unipotent
groups in MTH(k) whose Betti realization sends n ∈ Z to γn

x ∈ π1(X(C); u) (the latter
morphism does not exist for actual base points!). The de Rham realization of this
morphism T (Ω) → O(Ga) = T (k) is induced by resx : Ω → k.

The case D = {0, 1,∞}: One has that Ω has the basis ω0 := dz
z
, ω1 := dz

z−1
. By 0

(resp., 1) denote the tangential point based at 0 (resp., 1) with the tangent vector
−→
01

(resp.,
−→
10). Thus, dch from Talk 2 gives a path in π1(X; 0, 1). An explicit calculation

shows that there is an equality

ζ(n̄) =

∫

dch

ω̄(n̄) = comp
(
ω̄(n̄)

)
(dch) ,

where ω̄(n̄) is defined as in Talk 2.
Conclusion: MZV’s are real periods of an ind mixed Tate Hodge structure over Q with

non-negative weights.

References: [3, §§2.5,3.3], [4, §15], [7, §3], [8, §4]
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Thursday. Motivic structure on the fundamental group

8. Tannakian categories

The goal of this talk is first to recall the basic formalism of Tannakian categories
(without proofs). Then one shows how an information about the fundamental group of
a Tannakian category leads to upper bounds on periods. The case of a semi-product of
a pro-unipotent group with Gm is considered in more detail, which is the main result of
the talk.

Basic notions: Definition of a (neutral) Tannakian category C over a field k, definition of
a fiber functor ω : C → Vect(k). Example: C = Rep(G) for a linear pro-algebraic group G.
Isomorphism scheme I(ω, η) := Isom⊗

k(ω, η) associated with two fiber functors ω, η.
Given an object S in C, one has a canonical k-linear map

ω(S)⊗k η(S)∨ → O(
I(ω, η)

)
.

If C is tensor generated by S, then I(ω, η) is a closed subvariety in Isom k(ω(S), η(S)).
The fundamental group Gω := I(ω, ω) of (C, ω). The scheme I(ω, η) is a right torsor
under Gω and a left torsor under Gη. Main theorem: (C, ω) is equivalent to Rep(Gω)
with the forgetful functor.

Examples: Graded vector spaces and the group Gm. Local systems and their fibers.
Unipotent completion of an abstract group. Mixed (Tate) Hodge structures over Q with
two fiber functors ωdR, ωB to Vect(Q) and a point comp ∈ I(ωdR, ωB)(C).

Upper bounds on periods: Let k ⊂ K be a field extension, p be a K-point on I(ω, η),
and let S be an (ind-)object in C. Put P ⊂ K to be the k-subspace generated by
“periods” of type 〈α, p∨(β)〉, where α ∈ ω(S), β ∈ η(S)∨. Then P is a quotient of the
subspace in O(

I(ω, η)
)

generated by the image of ω(S)⊗k η(S)∨. Besides, if O(
I(ω, η)

)
is generated as a k-algebra by periods of S, then C is tensor generated by S.

Further, let c : K → K be a field involution over k and assume that char(k) 6= 2. Sup-
pose that c extends to an involution of I(ω, η) over k that commutes with the morphism
p : Spec(K) → I(ω, η) (such an extension may be not unique). Then P c is a subquotient
of O(

I(ω, η)
)c

.

Pro-unipotent group: Until the end of the talk we assume that char(k) = 0. The
fundamental group Gω of (C, ω) is pro-unipotent iff every object in C has a filtration
with quotients being the unit objet 1. Suppose that the k-vector space V := Ext1

C(1,1)
is of finite dimension r and Ext2

C(1,1) = 0. Then there is an isomorphism of Hopf
algebras O(Gω) ' T (V ), that is, Gω is the pro-unipotent completion of a free group on r
generators. To show this, one first uses the isomorphisms

Ext1
C(1,1) ' H1(Gω, k) ' Hom(Gω,Ga)

in order to construct a surjective morphism Spec T (V ) → Gω. Then one uses the inter-
pretation of Ext2

C(1,1) ' H2(Gω, k) in terms of extensions of Gω by Ga.

Semi-product of a pro-unipotent group with Gm: Let L be a rank one object in C
and put L−1 := L∨. Assume that every object S in C has an increasing filtration wnS,
n ∈ Z, whose n’th adjoint quotient is a direct sum of several copies of L⊗(−n). Suppose
that the filtration w is exact, respects morphisms in C, and the tensor structure. In
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particular, HomC(1, L⊗n) = 0 for n 6= 0 and Ext1
C(1, L⊗n) = 0 for n 6 0. Then one has

a canonical fiber functor over k

ω : S 7→ ⊕
n HomC(L⊗(−n), grw

nS) .

The corresponding fundamental group has the form Gω ' Gm n U , where U is a pro-
unipotent group. With this identification L corresponds to the representation of Gω that
factors through the tautological representation ofGm and ω corresponds to the restriction
to the subgroup Gm ⊂ Gω. Action of Gm on U by conjugation defines a grading on the
Hopf algebra O(U) and C is equivalent to the category of graded comodules over O(U).
In order to be coherent with the filtration w, we say that a representation of Gm has
degree n if an element λ ∈ Gm acts as multiplication by λ−n (in particular, L corresponds
to the degree −1 trivial comodule over O(U)).

Example: for k ⊂ C, put C = MTH(k) with L = Q(1)H and wn = W2n (the canonical
fiber functor ω is canonically isomorphic to ωdR). It follows that MTH(k) is equivalent
to Rep(GH), where GH ' Gm n UH with UH being a pro-unipotent over k.

Suppose that for any n, the k-vector space Vn := Ext1
C(1, L⊗n) has finite dimension rn

and Ext2
C(1, L⊗n) = 0 (in particular, rn = 0 for n 6 0). Then there is an isomorphism of

graded Hopf algebras

O(U) ' T
(⊕

n>0 Vn

)
,

where Vn has degree n (this is a graded version of the argument from the previous
section).

Periods in the pro-unipotenet case: We use notation and assumptions from previous
sections. In particular, ω is the canonical fiber functor over k and η is an arbitrary one.
Suppose that grn

W S = 0 for n < 0. Also, suppose that the involution c : I(ω, η) → I(ω, η)
is equal to the action of an order two element ε in Gη with respect to the left Gη-torsor
structure on I(ω, η). Filtration on S defines a filtration on ω(S), which, in turn, defines
a filtration on P (we put a trivial filtration on η(S)∨). Consider the increasing filtration
on the graded k-vector space

k[t2]⊗k T
(⊕

n>0 Vn

)
,

where t has degree 1. Then the filtered k-vector space P c is isomorphic to a (strict)
subquotient of k[t2]⊗k T

(⊕
n>0 Vn

)
.

The proof is as follows. First, any Gω-torsor is trivial, because H1(k,Ga) and
H1(k,Gm) are trivial. Thus, we may assume that η = ω. The morphism

Gm × U → Gω, (a, u) 7→ a · u
defines an isomorphism of graded algebras

O(Gω) ' k[t, t−1]⊗k O(U) ,

where the grading on O(Gω) is induced by right translations by Gm ⊂ Gω. Since
grn

W S = 0 for n < 0, the action of Gω on ω(S) factors through the monoid A1 n U .
Hence, the image of ω(S) ⊗ η(S)∨ is contained in the subalgebra k[t] ⊗k O(U). On
the other hand, as any order two element in Gη = Gω, ε is conjugate to the element
−1 ∈ Gm ⊂ Gω, while O({−1}\Gω) = k[t2, t−2] ⊗k O(U). Since translations in Gω

preserve the subalgebra O(A1 n U) in O(Gω), this finishes the proof.
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References: [4, §8.10], [5, §1], [6, §§A.13,A.14], [7, §§5.2, 5.5, 5.7], [12, §1]

9. Mixed Tate motives over Z

This talk covers, almost without proofs, some foundational material about motives.
The goal is to explain roughly the construction of the Tannakian category of mixed Tate
motives over Z. The main result from Talk 8 is applied in order to get an upper bound
on real periods of mixed Tate motives over Z.

Triangulated category of motives: We consider motives only with rational coeffi-
cients. Let SmCor(k) be the category with objects being smooth varieties over a field k
and morphisms being Q-linear combinations of finite correspondences. This is an addi-
tive category and one can consider its category of bounded complexes up to homotopy
Kb

(
SmCor(k)

)
. Then DMeff(k) is obtained as an idempotent completion of the Verdier

localization of Kb
(
SmCor(k)

)
by two types of relations: Mayer–Vietoris for Zariski

topology and A1-invariance. Examples: object M(X) defined by a smooth variety X,
Q(0) := M(Spec(k)), the Tate motive Q(1), the decomposition M(P1) ' Q(0)⊕Q(1)[2].
One formally inverts the positive Tate twists to get DM(k). There are triangulated and
tensor structures on DM(k) and rigidity holds: for any motive M in DM(k), there is a
dual motive M∨. Example: M(X)∨ is an algebra object.

Realizations: De Rham, Betti, and étale realization functors, which send M(X)
to the homology of X (dual to cohomology). The mixed Hodge realization functor
ωH : DM(k) → Db

(
MH(k)

)
. Example: realizations of Q(1).

Mixed Tate motives: Morphisms in DM(k) are related to K-groups:

HomDM(k)(M(X),Q(n)[i]) = K2n−i(X)
(n)
Q . Example:

HomDM(k)(Q(0),Q(1)[1]) = k∗ ⊗Z Q .

Some people believe in the existence of an abelian tensor category MM(k) of mixed
motives over k with Db

(
MM(k)

)
being equivalent to DM(k). For a smooth variety X,

its motive M(X) is expected to be in D60
(
MM(k)

)
. The Beilinson–Soulé conjecture:

HomDM(k)(M(X),Q(n)[i]) = 0 for i < 0 and all n.
Let DTM(k) be the minimal full triangulated subcategory in DM(k) that contains

all Q(n)[i]. Let MTM(k) be the full subcategory in DM(k) formed by iterated extensions
of all Q(n) (this is a rigid tensor category). Assume the Beilinson–Soulé conjecture holds
for X = Spec(k) (this amounts to an understanding of K-groups of k). Then MTM(k) is
abelian (moreover, it is a heart of a t-structure on DTM(k)). For all M, N in MTM(k),
one has

Ext1
MTM(k)(M, N) = HomDM(k)(M, N [1]), Ext2

MTM(k)(M,N) ⊂ HomDM(k)(M, N [2]) .

There is an exact tensor functorial increasing weight filtration Wn on mixed Tate mo-
tives whose 2n’the adjoint quotients are direct sums of copies of Q(−n) and whose odd
adjoint quotients are trivial. Given k ⊂ C, one has the mixed Hodge realization functor
ωH : MTM(k) → MTH(k), which respects the weight filtrations. Example: the Kummer
mixed Tate motive defined by an element from k∗ → Ext1

MTM(k)(Q(0),Q(1)), its mixed
Hodge and étale realizations.
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Borel’s result: Borel has computed explicitly K-groups of number fields. For k = Q,
this gives the following:

HomDM(Q)(Q(0),Q(n)[i]) = 0 for i 6= 0, 1 ,

HomDM(Q)(Q(0),Q(n)[1]) =




Q× ⊗Z Q if n = 1,

0 if n is even or negative,
Q if n ≥ 3 and odd.

Therefore, the Beilinson–Soulé conjecture holds for Spec(Q) and the category MTM(Q)
is abelian.

In addition, it follows from Borel’s arguments that ωH induces injective maps

Ext1
MTM(Q)(Q(0),Q(n)) ↪→ Ext1

MTH(Q)(Q(0)H ,Q(n)H) .

Mixed Tate motives over Z: The category MTM(Z) of mixed Tate motives over Z
is a full subcategory of MTM(Q) that consists of all objects whose étale realization is
unramified at all primes. Example: non-trivial Kummer motives are not from MTM(Z).
Equivalent description: M is from MTM(Z) iff W−n/W−n−2(M) is a direct sum of Q(n)’s
andQ(n + 1)’s for all n ∈ Z. This has the effect of killing Ext1(Q(0),Q(1)), while keeping
the same Ext1(Q(0),Q(n)) as in MTM(Q) for the other n’s and keeping the vanishing
Ext2(Q(0),Q(n)) = 0 for all n. If the motive M(X) of a variety X over Q is from
Db

(
MTM(Q)

)
and X has good reduction over all primes (which is quite rare), then M(X)

is actually from Db
(
MTM(Z)

)
.

The category MTM(Z) is neutral Tannakian. The de Rham and Betti realizations give
fiber functors over Q, denoted by ωdR and ωB, respectively. One sees that MTM(Z) satis-
fies the condition from Talk 8 with L = Q(1) and wn = W2n (the canonical fiber functor ω
is canonically isomorphic to ωdR). It follows that MTM(Z) is equivalent to Rep(GM),
where GM ' Gm n UM with UM being a pro-unipotent group over Q.

The functor ωH corresponds to a morphism of pro-algebraic groups GH → GM .
Since ωH is injective on Ext1’s, this morphism is surjective (one should use that UM

and UG are pro-unipotent). Therefore, the functor ωH is fully faithful and its image is
essentially closed under taking subquotients.

Upper bound on periods: For any variety X over Q, one has the complex conjugation
on X(C). This defines an automorphism of the fiber functor ωB, that is, an element ε
of order two in the corresponding fundamental group GωB

over Q. The comparison
isomorphism defines a C-point comp on I(ωdR, ωB). The complex conjugation c : C→ C
commutes via comp with the involution of I(ωdR, ωB) given by the action of ε (this can
be proved by an explicit local calculation with differential forms). Thus, by results from
Talk 8, the filtered subspace P c in R generated by all real periods of mixed Tate motives
over Z with non-negative weights is a (strict) subquotient of the graded Q-vector space

Q[t2]⊗Q T
(⊕

n>0Q · e2n+1

)
.

In particular, if en is the dimension of the n-th adjoint quotient of P c, then
en 6 en−2 + en−3 (write down explicitly an upper bound on the corresponding Poincaré
series).

References: [6, §1], [7, §§5.1, 5.2, 5.4]
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10. Motivic fundamental group

In this talk one constructs for special varieties a pro-unipotent group in MTM(Z)
whose realization is the mixed Hodge fundamental group from Talk 6. The case of P1

without three points is considered in more detail, which leads to Goncharov–Terasoma’s
theorem with the help of results from Talk 9.

Motivic bar complex: The idea is that every “complex of smooth varieties” over k
gives an object in DM(k). Let X be a smooth variety over k, a, b ∈ X(k). One replaces in
the bar complex (see Talk 4) the dg-algebra A•

M by the algebra object M(X)∨ in DM(k).
Since the differential, the product, and the coproduct structures on the bar complex have
a geometric origin, this defines an algebra ind-object B(X; a, b) in DM(k) together with
the coproduct structure. Equivalently, B(X; a, b) is the dual to the pro-motive given by
the cosimplicial path variety P •(X; a, b).

Mixed Tate case: Assume that the Beilinson–Soulé conjecture is true for Spec(k),
whence we have an abelian category MTM(k) being a heart of a t-structure on DTM(k).
Suppose that M(X) is from DTM(k) ⊂ DM(k). Then B(X; a, b) is an ind-object
from DTM(k). Taking H0 with respect to the t-structure, one obtains an algebra ind-
object in MTM(k). This defines mixed Tate motivic affine schemes π1(X; a, b)M together
with a groupoid structure in MTM(k). By construction, if k ⊂ C, then the mixed Hodge
realization of π1(X; a, b)M is π1(X; a, b)H .

Aside on mixed Hodge tangential fundamental group: Consider X = P1 rD as
in Talk 7, points a ∈ X(k), ∞ 6= y ∈ D(k), and a non-zero tangent vector v ∈ TyP1.
Assume that ∞ ∈ D. The embedding X ⊂ P1 r {y,∞} induces a morphism between
affine schemes in MTH(k)

π1(X; a, v)H → π1(P1 r {y,∞}; a, v)H .

Consider the isomorphism ϕ : TyP1 ' P1 r {∞} that sends 0 to y and whose differential
is the identity. It follows from Talk 7 that there is an isomorphism

π1(P1 r {y,∞}; a, v)H ' π1(TyP1 r {0}; ϕ−1(a), v)H ,

where the second affine scheme in MTH(k) corresponds to paths between actual points
and is a torsor under Q(1)H .

On the other hand, one has a morphism between affine schemes in MTH(k)

π1(X; a, v)H ×Q(1)H → π1(X; a)H

whose Betti realization sends (γ, n) to γ ◦ γn
y ◦ γ−1 ∈ π1(X(C); a), n ∈ Z. This induces

the morphism

π1(X; a, v)H/Q(1)H → Hom
(
Q(1)H , Lie

(
π1(X; a)H

))
=: Lie

(
π1(X; a)H

)
(−1) ,

where the action of Q(1)H on π1(X; a, v)H is through the morphism Q(1)H → π1(X; v)H .
Taking the de Rham realization and using a general result about free pro-unipotent
groups (the proof is not required), one shows that the latter morphism is a closed em-
bedding.

All together, this leads to a closed embedding between affine schemes in MTH(k)

π1(X; a, v)H ↪→ π1(TyP1 r {0}; ϕ−1(a), v)H × Lie
(
π1(X; a)H

)
(−1) .
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Motivic tangential fundamental group: Both the affine scheme
π1(TyP1 r {0}; ϕ−1(a), v)H and the vectorial space Lie

(
π1(X; a)H

)
(−1) in MTH(k) are

in the image of the functor ωH . By the properties of this functor from Talk 9, we obtain
a mixed Tate motivic affine scheme π1(X; a, v)M with an action of π1(X; a)M . Further,
taking products of torsors leads to mixed Tate motivic affine schemes π1(X; u, v)M

together with a groupoid structure in MTM(k). In addition, O(
π1(X; u, v)M

)
has

non-negative weights. Also, we have a morphism between motivic pro-unipotent groups
Q(1) → π1(X; u)M whose mixed Hodge realization is the morphism Q(1)H → π1(X; u)H .

The case of X = P1r{0, 1,∞}: We obtain an ind mixed Tate motive O(
π1(X; 0, 1)M

)
with non-negative weights such that MZV’s appear as (some of) its real periods. An up-
per bound on periods from Talk 9 immediately implies Goncharov–Terasoma’s theorem.

References: [6, §§3.12, 4.4], [10]
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Friday. Brown’s proof

11. Zagier’s theorem

The theorem is proved in [16] (see also [11]).

12. The proof. Part 1

Up to Joseph, Sergey, and Sergey.

13. The proof. Part 2

Up to Joseph, Sergey, and Sergey.
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[1] Y.André, Une introduction aux motifs, Panoramas et Synthèses, 17, SMF (2004)
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