
OVERCONVERGENT MODULAR FORMS AND THE ARTIN
CONJECTURE

The first goal of this summer school is to understand and prove the following theorem.

Théorème 0.1. Let ρ : GQ → GL2(C) be irreducible and odd with projective image A5.
Assume that ρ is unramified at 5. Then there exists a cuspidal weight one form f such
that L(f, s) = L(ρ, s). In particular, ρ satisfies the Artin conjecture.

This theorem is due to Taylor, Buzzard and Shepherd-Barron and was initiated just after
the proof of Fermat Last Theorem by Wiles. We will see indeed that many ingredients of
Wiles are used in the proof. Remark also that the case of projective image A5 was the only
unknown case in dimension two.

This theorem is also due to Khare and Wintenberger as a corollary of their proof of
Serre’s modularity conjecture (so latter with a different proof). They even managed to
remove the unramifiedness hypothesis at 5.

Today one can adapt the proof of Taylor and friends to arbitrary totally real fields, and
remove by the same occasion the unramifiedness assumption at 5.

The other goal of the summer school is to introduce p-adic modular forms, and to prove
various classicality theorems for such p-adic modular forms. Here a classicity theorem is a
statement saying that a particular p-adic modular form with good properties is in fact a
usual modular form, perhaps just with a q-expansion in Q̄p[[q]] and not in C[[q]].

The link between both subjects will be a classicality result for 5-adic modular forms of
weight one (we will try to understand why 5 plays such a strange role). Indeed, methods
of Wiles will allow us to construct an object f associated to ρ as in the theorem, but f
will be a 5-adic modular form of weight one, and perhaps not a classical form. To know
the holomorphy of L(f, s) (and in fact already to define L(f, s) as a function of a complex
variable s) one would need to prove the classicality of f .

All talks, including the introduction one, will last 1h30. Except in the introduction talk,
every statement should be proven. You should use the notations of the following text, and
not those of the references provided, because this will provide some uniformity between
the different talks. Speakers can exchange material between adjacent talks. If you have any
question on your talks (mathematical questions, references,...) you should contact me at
benoit.stroh@gmail.com

1. Sunday : Introduction

1.1. Talk 1 : Artin conjecture. No proof in this talk.
Let F be a number field, F̄ an algebraic closure and GF = Gal(F̄ /F ) the absolute Galois

group. Introduce the complex Galois representations ρ : GF → GLn(C). Explain why ρ is
continuous if and only if it has finite image.
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Introduce the L-function L(ρ, s) =
∏

p det(1 − ρ(Frobp)Np−s : (Cn)Ip)−1 where p run
through the primes ideals of OF and Ip ⊂ GF is the inertia subgroup of p. Give the region
of convergence of L(ρ, s).

State Artin conjecture : if ρ is irreducible non trivial, L(ρ, s) has an holomorphic conti-
nuation to C. Just say (without any recollection on class field theory) that Artin conjecture
is true if dim(ρ) = 1. Moreover, Brauer’s argument shows that L(ρ, s) has meromorphic
continuation to C and satisfies a functional equation for any ρ.

Recall quickly what is a modular form of weight k ≥ 1 and level Γ ⊂ SL2(Z) in analytic
terms : an holomorphic function on Poincaré half-plane satisfying a functional equation for
the action of Γ. If f is a modular form, define L(f, s) which looks like (if k = 1) an Artin
L-function associated to a Galois representation of dimension two. Explain that L(f, s)
is known to have analytic continuation to C. Therefore to prove that ρ : GF → GL2(C)
satisfy Artin’s conjecture, it is enough to prove that there exists a weight one form f such
that L(f, s) = L(ρ, s).

Then focus on the case where dim(ρ) = 2. Recall the classification of irreducible finite
subgroups of PGL2(C) : dihedral, A4, S4, A5. Except A5, all are solvable. Give the following
theorem of Langlands and Tunnell : in all cases of solvable image in dimension two, Artin
conjecture is true. Therefore it is enough to focus on the remaining A5-case.

Now restrict to F = Q. Explain the definition of oddness for ρ : GQ → GL2(C) : the
determinant of ρ(c) is −1 for any complex conjugation c ∈ GQ. State the main theorem of
this summer school, which is due to Taylor, Buzzard and Shepherd-Barron, and which was
given at the beginning of this text.

References : [N, ch.VII.10,11,12], [DS1, ch.5], [C]

2. Monday : modular forms and Galois representations

2.1. Talk 2 : Modular curves and forms. Let N ≥ 5 be an integer. Introduce the
modular curve X of level Γ1(N) over Spec(Z[1/N ]) as the moduli space of elliptic curves
with a point of order N . Explain briefly why it is representable (follow the argument of T.
Saito ; we used that N ≥ 5 to be sure that objects have no non-trivial automorphisms).
In this way, we get a smooth affine curve of Spec(Z[1/N ]). Explain its canonical compac-
tification X̄, which is a smooth projective curve. The universal elliptic curve extends to a
smooth but non proper group scheme E over the compactification X̄ : over the cusps, its
fiber is the multiplicative group Gm. Introduce the sheaf

ω = e∗ω1
E/X̄

where e : X̄ → E is the unit section. Define modular forms of weight k and level Γ1(N) as
global sections of the line bundle ωk on X̄. Make the link with the analytic definition of
modular forms (follows T. Saito). Advantage of the geometric definition of modular forms :
we have a canonical integral structure of Z[1/N ]-module on the complex vector space of
modular forms.

Let p be a prime not dividing N . Introduce X0(p) → Spec(Z[1/Np]) as the moduli
space of elliptic curves E plus a point of order N plus a subgroup H ⊂ E[p] of rank p
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in the p-torsion of E. There are two maps π1, π2 : X0(p) → X given in modular terms
by (E,H) 7→ E and E/H. This gives rise to (π1, π2) : X0(p) ↪→ X ×X which can be seen
as an algebraic correspondence on the curve X. Everything extends to X̄. Then introduce
Hecke operators geometrically as Saito, 2.6.

Recall what are ordinary and supersingular elliptic curves over Spec(Fp). Introduce the
integral model ofX0(p) over Spec(Z[1/N ]). By definition it parametrizes E an elliptic curve,
a point P of order N and a finite flat subgroup H ⊂ E[p] (note : finite flat subgroups will
be discussed in more details in the talk 6). Same for the compactification X̄0(p). The
scheme X̄0(p) is not smooth over Spec(Fp) but has two irreducible components, which
are isomorphic to two P1

Fp
meeting transversally. The meeting points corresponds to (the

finite number) of supersingular elliptic curves. Generically on the first component, E is
ordinary and H is etale. Generically on the second component, E is ordinary and H ' µp is
multiplicative. Explain that in great details, with many pictures. It will be a very important
ingredient in all the other talks. References are Saito, Deligne-Rapoport (with a complicated
stacky language), Diamond-Shurman (which avoids the algebraic geometry as much as
possible) or Katz, 1.13.

References : [S2], [DS1, ch.7], [DR, ch.V], [K1].

2.2. Talk 3 : Galois representations for high weight modular forms. Define what
are eigenforms : they are eigen for all Hecke operators Tp where p does not divide the
level N . To such a cuspidal eigenform f and to any prime number ` we want to asso-
ciate a continuous Galois representation ρf : GQ → GL2(Q̄`) (with infinite image) such
that L(f, s) = L(ρf , s) where L(ρf , s) is defined exactly as in the first lecture in the case
of finite Galois representations. In particular we want ρf to be unramified away from N`.
This full compatibility L(f, s) = L(ρf , s) would in fact be very difficult to show at primes
dividing N`, and we will just show equality between all factors of the Euler products at
primes not dividing N`. This amounts to show that tr(ρf (Frobp)) = ap for all p - N`
where ap is the eigenvalue of Tp on f .

First focus on weight two modular forms. Follow Saito, par.3. State first Kodaira-Spencer
isomorphism Ω1

X = ω2(−D) where ω is the line bundle of weight one forms introduced in
the previous talk and D ↪→ X is the set of cusps. Therefore Ω1

X is the sheaf of weight
two cuspidal forms. The Kodaira-Spencer isomorphism follows from classical deformation
theory. Then use (complex) Hodge theory to compute H1(X̄(C),C) as the sum of two
copies of S2(Γ1(N)), the C-vector space of weight two cusp forms of level Γ1(N). This is
the so-called Eichler-Shimura isomorphism.

Then give the construction of ρf : it is the part of the etale cohomology H1
et(X̄ ×

Spec(Q̄), Q̄`) where Tp acts by multiplication by ap for all p - N , where Tp(f) = ap ·
f . Note that the etale cohomology can be (artificially) replaced by the Tate module of
the Jacobian of X̄. Suggestion : do not spend time recalling what is etale cohomology.
Eichler-Shimura isomorphism shows that ρf is indeed of dimension two. Finally prove the
congruence relation as in Saito, 3.4 building on the results of the previous talk.
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Explain what need to be done in weight k ≥ 3 : the etale cohomology group should be
replaced by H1

para(X̄ × Spec(Q̄), j∗Symk−2T`E) which is isomorphic to

Im
(
H1
c (X × Spec(Q̄), Symk−2T`E)→ H1(X × Spec(Q̄), Symk−2T`E)

)
Here j : X ↪→ X̄ is the canonical open embedding and T`E is the etale sheaf on X coming
from the Tate module of the universal elliptic curve. The only part which is really more
difficult than for k = 2 is Eichler-Shimura isomorphism which asserts

H1
para(X̄ × Spec(Q̄), j∗Symk−2T`E) ' Sk(Γ1(N))2 .

This follows from Hodge theory with coefficients. Ask me for scans of a previous version
of the text of Saito, far more complete, with every relevant computation.

Explain finally why ρf is always odd in the sense that det(ρ(c)) = −1 for all complex
conjugation c ∈ GQ. This follows directly from Hodge theory and Eichler-Shimura isomor-
phism : the action of ρ(c) can be checked on the level of the natural pure Hodge structure
of weight (0, k − 1) associated to V = ι ◦ ρf where ι : C ∼→ Q̄l is an abstract isomorphism.
But by Hodge theory this complex conjugation exchanges the spaces V k−1,0 and V 0,k−1

therefore the matrix of ρ(c) is diagonal with coefficients (1,−1) in a good basis.
References : [S2]

2.3. Talk 4 : Galois representations for weight one modular forms. Let f be a
weight one eigen cuspidal modular form of level Γ1(N). We want to construct ρf : GQ →
GL2(C) with finite image. It can be shown that such a Galois representation can not be
found in the etale cohomology of modular curves. Therefore another strategy must be
found. This was done by Deligne and Serre who constructed ρf by p-adic interpolation
using the previous construction for an infinite family of weights ≥ 2, therefore relying on
the results of the previous talk.

Introduce the Hasse invariant H as in Katz, 2.0 and 2.1. Discuss its lifting Ep−1 if p ≥ 5.
As finally we will only consider p = 5 it is not worth spending time on the cases where p < 5.

Explain now the method of Deligne and Serre, with some emphasis on the paragraph 6,
theorem 6.7 and the famous lemma 6.11, which is now called Deligne-Serre lemma. Give
indications on the analytic number theory involved in the construction (paragraph 5, 7
and 8). Do not explain paragraph 9 but if you have time, you can speak of the results
explained in the paragraph 4. This results should already have been sketched in the first
lecture, but without any proof.

Insist on the oddness : as ρf is odd if the weight of f is ≥ 2, this is still true for weight one
forms. Cultural remark : even Galois representations of dimension two are still expected to
be associated to analytic objects, but this objects will be Maas forms with eigenvalue of
the Laplacian 1/4. Maas forms are real analytic functions satisfying a functional equation
on Poincaré upper half plane, with contrast to weight one forms which are holomorphic
on the Poincaré half-plane. But no one knows how to associate Galois representations to
Maas forms today...

The following remark is important : what is difficult in Deligne-Serre is to get a finite
Galois representation. They get it using analytic number theory and construction of ρf
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mod p for all primes p. If one just want to construct a continuous ρf : GQ → GL2(Q̄p)
without knowing it is finite, where p is fixed, things become easier. One construct ρf as a
limit of ρf,n : GQ → GL2(O/mn) when n→∞, where O is a the ring of integers of a finite
extension of Qp depending on f , and m its maximal ideal. One does exactly as in Deligne-
Serre, paragraph 6, replacing λ by mn. Try to explain this, because it will important for
Hida theory.

References : [DS2].

3. Tuesday : p-adic geometry of modular curves

3.1. Talk 5 : Rigid-analytic geometry. The goal of this talk is to explain various
constructions in rigid analytic geometry of Tate. Rigid analytic varieties are kind of com-
plex manifolds, but over p-adic fields : holomorphic functions are replaced by some conver-
ging power series. Tate geometry has important advantages : it allows us to speak about
open and closed balls into the rigid varieties associated to a scheme over Qp. This will
be essential to define p-adic modular forms in a next talk. This theory has also some
drawbacks : a complicated topological interpretation (a Grothendieck topology and not
a normal topology ; also in Tate geometry we speak frequently of « quasi-compact open
subset » which are morally both open and compact, which is strange). Those drawbacks
can be corrected by the use of Berkovich analytic geometry, but this will not be important
for us this week.The standard reference for rigid geometry is Berthelot.

Begin with the definition of Tate algebra. Explain then what a rigid variety following
Berthelot, 0.1. Explain what is a quasi-compact rigid variety, and explain why holomorphic
functions (in the p-adic sense) are bounded on quasi-compact varieties. Gives examples
of rigid varieties : closed balls, open balls, locus where |f | ≥ 1, locus where |f | < 1
where f ∈ Qp < X, Y, Z, · · · > is in a Tate polynomial algebra.

Explain paragraph 0.2 of Berthelot. Give also many examples. You can for instance see
what happen when you complete formally the affine line A1

Zp
along its special fiber A1

Fp
.

Which rigid variety do you get as its rigid generic fiber in the sense of Berthelot ? And if
you complete A1

Zp
along the origin 0Fp of the special fiber ? Also explain the specialization

morphism of Berthelot.
Do not speak of the paragraph 0.3. It will not be relevant for us.
Explain 1.1 and 1.2 of Berthelot : definition and properties of tubes and their strict

neighborhoods. Gives a lot of examples, writing explicit equations for your rigid varieties.
Don’t explain 1.3 of Berthelot.

Finally state and prove proposition 2.2.4 of [PS1]. It will be useful to construct the
canonical subgroup in another talk.

References : [PS2], [B].

3.2. Talk 6 : Rigid-analytic modular curves. Rigid-analytic modular curves are the
basic geometric objects on which the theory of p-adic modular forms is based. Moreover
they give nice illustrations to general principles of rigid-analytic geometry.

Begin by a quick definition of finite flat group schemes. Give the main theorem of Oort-
Tate : finite flat group schemes of order p over the spectrum of a local Zp-algebra R are in
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bijection with equivalences classes of couples (a, b) ∈ R2 such that ab = ωp where ωp ∈ Zp
is an element of valuation one defined by Oort-Tate. The equivalence classes are given
by (a, b) ' (λp−1a, λ1−pb) where λ ∈ R∗. Don’t give any indication on the proof but deduce
the following : finite flat groups schemes of rank p over Spec(F̄p) are isomorphic to Z/p,
µp or αp. Moreover finite flat groups schemes of order p over discrete valuation rings R of
mixed characteristic (0, p) are in bijection with [0, 1] intersected with the image v(R) of the
valuation. Give the recipe to deduce from this number the reduction of the group schemes
over F̄p.

Following the formalism introduced in the previous talk and the notations of the talk 2,
introduce Xrig, the rigid generic fiber of the formal completion of X → Spec(Zp) along
its special fiber. Therefore Xrig is the moduli space in rigid geometry for elliptic curves
with good reduction and with a point of order N . Introduce Xrig

ord, the tube of the ordinary
locus of the special fiber of X. This is a quasi-compact open of Xrig parametrizing elliptic
curve with good ordinary reduction. Introduce the variants with the compactification :
X̄rig which is the generic fiber of the completion of X̄ along its special fiber, and X̄rig

ord. By
convention, the cusps in X̄ × Spec(Fp) are in the ordinary locus.

Introduce X0(p)rig which is the rigid generic fiber of the formal completion of X0(p) →
Spec(Zp) along its special fiber. Recall (talk 2) that X0(p)× Spec(Fp) has two irreducible
components which are P1

Fp
intersecting transversally at supersingular points. On this inter-

section points, the fiber of the universal finite flat subgroup H is isomorphic (locally for the
etale topology) to αp. On the smooth locus of the first component H is isomorphic to Zp.
On the smooth locus of the second component, it is isomorphic to µp. One can therefore de-
fine the ordinary-multiplicative locus of X0(p)×Spec(Fp) as the locus where H ' µp. Same
for X̄0(p). Introduce finally X0(p)rig

ord−mul which is the tube of the ordinary-multiplicative
locus. It is a quasi-compact open subset. Same for X̄0(p)rig

ord−mul. Draw pictures.
Introduce the degree function deg : X̄0(p)rig → [0, 1] ∩ Q which is the valuation of the

Oort-Tate parameter of H. This function is locally the valuation of an analytic function
on X̄0(p)rig. The ordinary-multiplicative locus is deg−1(1) and so on. Remark : the degree
function has been defined in a far greater generality by Fargues but, except for some
properties, this general definition will not be so important for us.

Introduce the operator Up which associates p points to one point on X0(p)rig. By defini-
tion Up(E,H) is the set of all (E/L,E[p]/L) where L ⊂ E[p] is a generic supplementary
of H. Be careful with the following : if (E,H) corresponds to a point of X0(p)rig then by
definition the elliptic curve E has good reduction over the ring of integers O of an exten-
sion K of Qp. The operation of schematic closure defines a bijection between subgroups
of EK [p] and finite flat subgroups of E[p] over Spec(O). But when we speaks about a sup-
plementary L we really mean L ⊂ E[p] finite flat over Spec(O) such that EK [p] = LK⊕HK .

Prove the statements of [P1], paragraph 2 (replacing everywhere abelian varieties by
elliptic curves). Remark : you can follow this reference to explain Oort-Tate theory and
the degree function.

Références : [OT], [Fa], [P1].
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3.3. Talk 7 : Hida theory. Alice Pozzi
Follow [P2] adapting everything to GL2.

4. Wednesday

4.1. Talk 8 : Residually modular Galois representations. In this talk we will consi-
der the prime number p = 5. We will look at a residual Galois representation ρ̄ : GQ →
GL2(F̄p) and show that under some hypothesis, it arises as the reduction modulo p of a ρf
with f modular. The goal of the talk is to present the main result of [T], but perhaps
following [PS1] (replacing everywhere totally real fields by Q).

Begin with the lemma 1.1 of [PS1], which summarizes solvable base change due to Lan-
glands and Tunnell. Let ρ̄ : GQ → GL(F̄5) be an odd Galois representation with projective
image A5. Explain lemma 2.2 of [PS1], which relies on class field theory. Explain lemma 2.3
in detail, following [SBT] (prove what you want in this reference). At this point we found
a totally real field F solvable over Q and an elliptic curve E over F such that E[3] is an
irreducible Galois representation and E[5] is isomorphic to ρ̄ restricted to GF up to twist.

Explain how we can deduce from this the modularity of ρ̄|GF
(be careful : this notion of

modularity for representations of GF is related to automorphic representations for GL2(AF )
or to Hilbert modular forms, but not to usual modular forms). For this argue as in [PS1],
proposition 2.4, using Kisin’s R = T theorem (do not even state this theorem, some talks
will speak about analogous theorems latter). This game between 3 and 5 is due to Wiles
in his proof of Fermat last theorem. Use finally lemma 1.1 to deduce the modularity of ρ̄
as a representation of GQ.

Remark : for F = Q you can just forget the notion of « ordinairement modulaire » of
prop.2.4 : this notion is equivalent to the modularity in the cases at hand.

References : [T], [SBT], [PS1]

5. Thursday : Classicality of overconvergent modular forms

5.1. Talk 9 : Overconvergent modular forms. In this talk, you will define the funda-
mental notion of overconvergent modular forms, and prove that Hida theory gives rise to
overconvergent modular forms.

First define overconvergent modular forms. Use notations introduced in the talk 6. By
definition, an overconvergent modular form of weight k ∈ Z is a section of the line bundle ωk
defined on a strict neighborhood of X̄0(p)rig

ord−mul in X̄0(p)rig. Therefore it is a section on ωk

defined on deg−1([1 − ε, 1]) for ε > 0 because such neighborhood are cofinal in the set of
all strict neighborhoods. Here I defined more precisely overconvergent modular forms of
level Γ1(N) outside p and level Γ0(p) at p. You will find sometimes variants with Γ0(p)
replaced by Γ1(pn) but this is useless for us.

For all that you can follow Kassaei par 3.1 and 3.2 but try to formulate things with
the degree function instead of the precise bounds with Ep−1 used by Kassaei : they are
unuseful.

Explain the action of the Hecke operators T` and Up on the space of overconvergent
modular forms. The most interesting is Up and you will use the fact that for all ε ∈]0, 1[,
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there exist η < ε such that

Up
(
deg−1([1− ε])

)
⊂ deg−1([1− η]) .

This fact has been proven in the talk 6.
Explain the abstract notion of a p-adic Banach space and what it means for an operator

to be completely continuous, as in the beginning of Serre. Prove that Up acts completely
continuously on the space of overconvergent modular forms, as in Kisin-Lai, coro 4.3.6
(which is written for Hilbert modular varieties but translate for usual modular forms),
giving all the results needed of the chapter 2 of Kisin-Lai.

Explain the canonical subgroup theory in the very rough following form which will be
enough for us. First notice that an elliptic curve over Spec(Zp) with ordinary reduction has
a unique subgroup in EQp [p] with multiplicative reduction : this follows from the standard
rigidity arguments for groups of multiplicative type (SGA 3). Therefore π1 : X̄0(p) → X̄

which maps (E,H) to E induces an isomorphism between X̄0(p)rig
ord−mul and X̄rig

ord. This
isomorphism extends to strict neighborhood by the proposition 2.2.4 of [PS2], proven in
the talk 5. The inverse of this isomorphism associate to an elliptic curve E which is close to
be ordinary a « canonical » subgroup of E[p] which is close to be multiplicative. Remark :
there exists complicated theories giving a numerical meaning to this closeness. This will
not be important for us.

Corollary : overconvergent modular forms can also be seen as sections of ωk on a strict
neighborhood of X̄rig

ord on X̄rig. Therefore, it doesn’t really makes sense to say that an
overconvergent modular form has level Γ0(p) or no level at p.

Prove finally that ordinary p-adic modular forms in the sense of Hida (see talk 7) are
overconvergent. Adapt [P2, th A.1.(3)] and its proof to usual modular forms. The equivalent
of [P2, th.A.1.(1)(2)] for usual modular forms would have been already proven in talk 7.
The proof of [P2, th A.1.(3)] should be very easy now and can be found on p.50 of this
paper.

References : [K2], [S1], [KL], [P2].

5.2. Talk 10 : Classicality in weight ≥ 2. In this talk you will explain the proof of a
famous theorem of Coleman saying that any overconvergent modular form f of weight k ∈ Z
eigen for Up is a classical modular form if the valuation of the eigenvalue α of Up (which is
called the slope) is < k − 1.

You will not explain the original proof of Coleman but a proof found latter by Buzzard
and Kassaei. This proof amounts to use the functional equation Up(f) = αf to extends
analytically f to X0(p)rig. But this rigid variety is proper, we can apply GAGA and deduce
the classicality of f .

First use results of the paragraph 2 of [P2], already stated and proven in talk 6. Ap-
ply [P2], prop 6.2 (more precisely, the translation of this statement for usual modular
forms) to show that if α 6= 0, the form f extends to deg−1(]0, 1]).

It remains to extend f to deg−1(0). This is done in Kassaei. First present the gluing
lemma 2.3 of Kassaei (but do not spend to much time on 2.1, 2.2). Then explain Kassaei,
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paragraph 4. If you want to find another presentation, you can look at [P1] (which deals
with Siegel modular forms but you can translate).

Remark that the theorem of Coleman is a motivation for studying overconvergent mo-
dular forms : in the proof one sees exactly where the overconvergence is important.

Remark also that for ordinary forms, the valuation of α is zero by definition. So Coleman’s
theorem apply for weights ≥ 2, but not to weight one. That’s why Buzzard and Taylor had
to found another way to prove classicality in weight one.

References : [K2], [P1].

5.3. Talk 11 : Classicality in weight one. Present Buzzard-Taylor work, more preci-
sely [BT, th.4] and its proof, which is just one page long. Please, don’t use the notations
of Buzzard and Taylor, but the notations introduced in the previous talks, and especially
the degree function of the talk 6.

The theorem of Buzzard and Taylor can be rephrased in the following way, with the same
notations as in their theorem 4 : if f and g are two p-adic modular forms of level Γ0(p)
which are ordinary for Up such that g = π∗

2(f), then both f and g are classical. Here π1

and π2 : X̄0(p) → X̄ are respectively the maps (E,H) 7→ E and (E,H) 7→ E/H outside
the cusps. Moreover, as π1 induces an isomorphism between the multiplicative ordinary
locus X̄0(p)rig

ord−mult and the ordinary locus X̄rig
ord, we have seen f as a form (a section of ωk

where k is its weight) defined on X̄rig
ord.

The ordinarity condition for the action of Up is the following, which is a little more
general as what appeared in the previous talks (same difference as eigenvectors versus
generalized eigenvectors). On says that a p-adic modular form g is ordinary for the Hecke
operator Up if there exists a polynomial P ∈ Q̄p[T ] such that P (Up)(g) = 0 and P (0) ∈ Z̄∗

p.
By results of talk 9, this implies that g is overconvergent. In Buzzard-Taylor theorem, one
has simply P (T ) = (T − α)(T − β).

You can either follow Buzzard-Taylor proof, or find another proof which is an etale
descent by π2 (ask me for more details). Indeed because of results of the talk 6 and the
ordinarity, g extends to deg−1(]0, 1]). One will show that it still descends by π2 on

π2

(
deg−1(]0, 1])

)
= X̄rig

and therefore the classicity will follow by the GAGA principle. To show that g still descends
by π2 on deg−1(]0, 1]) one can write the usual descent diagram for π2

deg−1(]0, 1])×π2, X̄rig, π2 deg−1(]0, 1]) +3 deg−1(]0, 1]) // π2

(
deg−1(]0, 1])

)
= X̄rig

X̄0(p)rig
ord−mult ×π2, X̄rig, π2 X̄0(p)rig

ord−mult
+3

OO

X̄0(p)rig
ord−mult

//

OO

X̄rig
ord

OO

If one denotes by p, q : deg−1(]0, 1]) ×π2, X̄rig, π2 deg−1(]0, 1]) → deg−1(]0, 1]) one has by
hypothesis p∗(g) = q∗(g) on

X̄0(p)rig
ord−mult ×π2, X̄rig, π2 X̄0(p)rig

ord−mult
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and it is enough to extends this equality on

deg−1(]0, 1])×π2, X̄rig, π2 deg−1(]0, 1])

By the analytic continuation principle, it is enough to prove that the canonical morphism
from the set of connected components

π0

(
X̄0(p)rig

ord−mult ×π2, X̄rig, π2 X̄0(p)rig
ord−mult

)
→ π0

(
deg−1(]0, 1])×π2, X̄rig, π2 deg−1(]0, 1])

)
is surjective. But this can be shown directly (try yo do it !)

6. Friday : The Artin conjecture

6.1. Talk 12 : Ordinary representations. This talk introduce general notions in p-adic
Hodge theory ; this is more a survey than a talk with all the proofs provided.

Focus on a continuous Galois representation ρ : Gal(Q̄p/Qp) → GL2(Q̄p). Recall the
definition of being crystalline, semi-stable and potentially semi-stable [Fo, II and III]. What
will be important for us is that we can construct a Weil-Deligne representation Dpst(ρ)
which a Q̄p-vector space of dimension ≤ 2, endowed with a nilpotent operator N and an
action of Gal(Q̄p/Qp) which has finite image on the inertia. Then ρ is potentially semi-
stable (or de Rham, this is equivalent by a celebrated theorem of Fontaine and Colmez) iff
the dimension of Dpst(ρ) is two. Moreover it is cyistalline iff N = 0 and the discrete action
of the local Galois group is unramified.

Explain that the p-adic etale cohomology of proper smooth varieties over Spec(Qp) with
good reduction over Spec(Zp) is crystalline. If the variety has only semi-stable reduction
then it is semi-stable. Both are difficult theorems due to Faltings, do not enter into the
proof. Corollary : modular forms of weight≥ 2 give rise to crystalline Galois representations
(if the form has no level at p) or semi-stable representations (if the form has level Γ0(p)).
Moreover, weight one modular forms give rise to potentially semi-stable Galois represen-
tations, because they are known to be of finite image (see talk 4).

Introduce the concept of ordinary representations following [Fo, IV]. Give the main
theorem of Perrin-Riou : ordinarity implies potentially semi-stable.

Introduce a generalisation of this concept : ρ is nearly ordinary if it is conjugated to an
upper triangular representation of Gal(Q̄p/Qp). Note that this does not imply the potential
semi-stability : on the opposite, the logarithm of the cyclotomic caracter can be used to
produce an extension of the trivial character by itself which is not potentially semi-stable.
Give the following theorem : if f is a p-adic modular form which is ordinary for the Hecke
operator Up (which means that Up(f) = α·f with α ∈ Z̄∗

p) then the Galois representation ρf
is nearly ordinary. But it is a priori not potentially semi-stable unless f is classical.

6.2. Talk 13 : Deformations rings. Stéphane Bijakowski

6.3. Talk 14 : R=T and conclusion. Benoît Stroh
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