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1 Introduction

This summer school is concerned with two results linking cycles on arithmetic models of
orthogonal Shimura varieties to modular forms. The �rst result is [9, Theorem 3] while
the second is [11, Theorem A]. We recommend reading the introductory chapters of [6],
[9], [10] and [11] to get an overview of the involved statements and related results.

We now use this introduction to formulate both theorems and to outline the program
for this school.

1.1 CM elliptic curves and incoherent Eisenstein series

Let K/Q be an imaginary-quadratic �eld with ring of integers OK . A CM elliptic curve
over a scheme S over OK is de�ned as follows. It is a pair (E, κ) where E/S is an
elliptic curve and κ : OK → End(E) is a ring homomorphism such that the induced
action of OK on Lie(E) is via the structure morphism. We denote by M/SpecOK the
coarse moduli scheme of such pairs. By the main theorem of complex multiplication,
M ∼= SpecOH where H/K is the Hilbert class �eld.

A special endomorphism of a CM elliptic curve (E, κ) is an endomorphism j ∈ End(E)
with tr(j) = 0 and j ◦ κ(α) = κ(α) ◦ j for all α ∈ OK . For each t > 0, we de�ne the
special cycle Z(t) −→ M as the coarse moduli space of triples (E, κ, j) where (E, κ)
is a CM elliptic curve with special endomorphism j of degree t. The scheme Z(t) is a
disjoint union of divisors on M . In particular, it is artinian and we de�ne its arithmetic
degree as

d̂eg(Z(t)) := log |OZ(t)| =
∑
p

∑
x∈Z(t)(Falg

p )

lenW (Falg
p )(ÔZ(t),x) · log p.

Here, ÔZ(t),x is the strict completion of OZ(t),x. The spectrum Spec ÔZ(t),x is the formal
deformation space of the tripel (E, κ, j)/Falg

p de�ned by x.

For technical reasons, we assume from now on that the discriminant of K is prime.
Then the �rst major result of this school is [6, Theorem 1.2.2] which gives the degree
d̂eg(Z(t)). We will get this result by a direct computation as in [6]. First we count the
geometric points Z(t)(Falg

p ) in Talk 2.2, then we compute the length of the local ring at
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each point in Talk 2.3. The calculation of the length reduces to the formula of Gross [5,
Proposition 3.3] which we will prove by following the exposition in [1].

In the fourth talk 2.4, we will de�ne a certain (non-holomorphic) modular form φ as in
[9, �1 and �2]. This modular form is the central derivative of an incoherent Eisenstein
series. A direct computation of its Fourier coe�cients will prove our �rst main result:

Theorem 1.1 (Kudla-Rapoport-Yang [9]). Let

φ(τ) =
∑
t∈Z

at(φ)qt

be the Fourier expansion of φ, where q = exp(2πiτ). Then for all t > 0,

at(φ) = d̂eg(Z(t)).

1.2 Shimura curves and special cycles

LetB/Q be an inde�nite quaternion division algebra with maximal orderO×B . We denote
byM/ SpecZ the moduli stack of abelian surfaces with an action of OB satisfying the
special condition. It is a regular �surface� (two-dimensional stack), proper and �at over
Z and smooth away from the primes dividing the discriminant D(B) of B. In fact, it is
an arithmetic model of the Shimura curve O×B\h± associated to the quaternion algebra
B.

The surface M has semi-stable reduction at the primes p | D(B). Its �ber over such
p is a con�guration of lines, which intersect transversally. We will use the theorem of
Cherednik-Drinfeld (i.e. p-adic uniformization by the formal Drinfeld upper half-plane
Ω̂) to study these �bers. This will also determine the subspace of CH1(M) spanned by
vertical cycles.

In Talk 3.3, we will de�ne a family of divisors on Ω̂ following [8]. These local special

cycles are (up to Cohen-Macaulay�cation) the loci on Ω̂ where a given endomorphism
of the framing object lifts. The local special cycles uniformize the global ones, which
will be de�ned in the following talk.

In Talk 3.4, we will de�ne the special cycle Z(t) −→ M for each integer t > 0. As
in the case of the moduli of CM elliptic curves, the support of Z(t) is the locus where
the abelian surface has �complex multiplication� by the order Z[

√
−t]. These cycles can

have vertical components in the �bers of bad reduction. A careful analysis of these
components with the help of the p-adic uniformization will prove the following result,
see [11, Theorem 4.3.4].

Theorem 1.2. Let Y be a vertical divisor on the surfaceM (i.e. a linear combination
of components of closed �bers of M/Z). Denote by ω the relative dualizing bundle for
M/Z and denote by 〈 , 〉 the usual intersection product of divisors on a surface. Then
the series

−〈ω, Y 〉+
∑
t>0

〈Z(t), Y 〉qt ∈ C[[q]] (1.1)

is the q-expansion of an elliptic modular form of weight 3/2.

Up to now, the theory was purely algebraic. But we will endow the Z(t) with Green
functions on their complex �bers to de�ne classes Ẑ(t, v) in the arithmetic Chow group
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ĈH
1
(M). These classes are even de�ned for t ≤ 0. We will recall the de�nition of

ĈH
1
(M) in Talk 4.1 and prove the important decomposition [11, Proposition 4.1.2]

ĈH
1
(M) = M̃W ⊕ (Rω̂ ⊕Vert)⊕ a(A0(MR)0) (1.2)

in Talk 4.2. We can then form the generating series

φ̂(q) :=
∑
t∈Z
Ẑ(t, v)qt ∈ ĈH

1
(M)[[q, q−1]]. (1.3)

The second main result of this school is then the following theorem.

Theorem 1.3 (Kudla-Rapoport-Yang [11]). The generating series φ̂(q) is the Fourier
expansion of a (non-holomorphic) modular form of weight 3/2 and level Γ0(4D(B)) with

values in ĈH
1
(M)⊗R C.

Note that φ̂ is a sum of four components corresponding to the decomposition (1.2). It
is enough to prove the theorem for each component separately. The vertical component
was already handled in previous talks, at least up to the claim about the level. The
remaining talks are devoted to the proof of the modularity of the other components.

We will consider the Hodge component

φheight := 〈φ̂, ω̂〉 ∈ C[[q, q−1]]

in more detail. The proof of its modularity relies on an explicit computation of its Fourier
coe�cients. These can then be compared to the Fourier coe�cients of the derivative of a
certain Eisenstein series, see [10, Theorem A]. To calculate the coe�cients of φheight, one
has to determine the Faltings heights of certain abelian surfaces which are isogeneous to
the product of two CM elliptic curves. We will consider both the heights of CM elliptic
curves and their change under isogeny.

The last two talks deal with the Mordell-Weil and the analytic component of φ̂. We
will follow the presentation given in [11]. Only one talk, if there is an introduction on
Sunday.

1.3 Some remarks

All talks last 90 minutes. This program should be understood as a suggestion and
speakers should feel free to change the emphasis of their talk. Please do not hesitate to
contact us1 if you have any questions.

2 Moduli of CM elliptic curves

2.1 Sunday: Moduli of CM elliptic curves and special cycles

Possibly an introductory talk, maybe by Kudla.

Follow the beginning of [9, �5] to de�ne the moduli space M/ SpecOK of CM elliptic
curves. State and prove Proposition 5.1. To show thatM is étale over SpecOK , proceed
as follows.

1mihatsch@math.uni-bonn.de
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You need to show that the formal deformation space at a geometric point (E, κ) ∈
M(Falg

p ) over p ∈ SpecOK is isomorphic to the strict completion ÔK,p. Recall the
Theorem of Serre-Tate to reduce this to a statement about p-divisible groups. Brie�y
de�ne the notion of a formal OK-module of height h as in [17, �1.1 and �1.2]. State [16,
Theorem 3.8] without proof, then follow the case distinction in [9] after Corollary 5.2.
In both cases, the connected part of the p-divisible group is a formal OK,p-module of
height 1 and the cited theorem yields the result. The universal deformation of (E, κ)

over ÔK,p is called the canonical lift.

De�ne the space of special endomorphisms of a CM elliptic curve and de�ne the special
cycles Z(m). State and brie�y prove Proposition 1.1.3 and Corollary 1.1.4 in [6]. In
particular if m > 0, then Z(m) is a zero cycle. De�ne the arithmetic degree of Z(m).

Introduce the set Diff(m) and state [6, Theorem 1.2.1]. Mention that this theorem yields
an explicit formula for d̂eg(Z(m)) as in Theorem 1.2.2. Prove part a) of the theorem by
following [6] through �1.4.

2.2 Monday I: Geometric points and Orbital integrals

The aim of this talk is to prove Theorem 1.2.1 b) of [6].

De�ne an action of Pic(OK) onM with the help of the Serre construction and recall the
main theorem of complex multiplication as in Proposition 5.3 and Corollary 5.4 of [9]
without proof. Prove Corollary 5.5 which is a crucial ingredient in the orbital integral
formula. An argument for the proof is given in [6, Corollary 3.7.6], it uses the existence
of canonical lifts from the �rst talk to reduce the statement to the generic �bre.

Follow [6, �2.2 and �2.3] to prove Theorem 1.2.1 b).

2.3 Monday II: Formula of Gross

The aim of this talk is to prove Theorem 1.2.1 c) of [6].

Use [9, Corollary 5.2] to explain why the length of Z(m) at a geometric point x ∈
Z(m)(Falg

p ) can be computed as length of the deformation space of a triple (E, κ, j).
(Note that Z(m) is only a coarse moduli space.) Then use the theorem of Serre-Tate to
reduce this to a statement about the canonical lift. To get the �nal formula [6, Theorem
3.10.1], you need to prove [17, Theorem 1.4] which is due to Gross [5]. You can proceed
as follows.

De�ne formal group cohomology H2(F,M) as in [16]. Specialize to the case of height 2
and prove [17, Theorem 1.4] by induction. It is enough if you do this in the unrami�ed
case, the rami�ed case being similar. Note that the proof of [17, Lemma 1.3] is not valid
since [16, Corollary 3.4] cannot be applied outside of characteristic p. We give an ad
hoc proof in the appendix.

Formulate these results as Theorem 1.2.1 c) of [6] and give the formula of Theorem 1.2.2.

2.4 Monday III: Relation to Eisenstein series

The aim of this talk is to identify the length of Z(m) with the mth Fourier coe�cient
of the derivative of an incoherent Eisenstein series. This is [6, Proposition 1.3.4] which
follows from Proposition 1.3.1.
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Provide the general adelic setup from [9, �1]. Recall the Weil representation and de�ne
incoherent and coherent Eisenstein series. Specialize to our situation as in �2 and de�ne
the relevant Eisenstein series. De�ne its Fourier coe�cients and explain how they factor
in local Whittaker integrals.

Present the results of the computations of these Whittaker integrals (either from [6] or
from [9, �2]) to deduce the equality deg(Z(m)) = −a′m(v, 0).

3 Algebraic special cycles on Shimura curves

3.1 Tuesday I: Arithmetic models of Shimura curves

De�ne the Shimura curve M associated to an inde�nite quaternion algebra B/Q as
in [11, �3.1] and state Proposition 3.1.1. Sketch its proof, in particular explain the
smoothness, the regularity and the properness with some more details than in [11]. For
the properness, recall the valuative criterion for stacks, see [12]. Note that the Serre-
Tate theorem and the deformation space of a p-divisible formal group of dimension 1
and height 2 [16, Theorem 3.8] were recalled in the �rst talk. The semi-stability will be
proved in the next talk.

Explain the isomorphism of the quaternion Shimura datum with the orthogonal one as
in [11, �3.2]. Explain the complex uniformization ofM(C), i.e. Propositions 3.2.1 and
3.2.2.

De�ne the Hodge bundle onM and state that it is isomorphic to the relative dualizing
bundle as in [10, �3]. Prove this at the primes of good reduction, where it follows from
the functorial description of Ω1

M/Z.

3.2 Tuesday II: Ω̂ and p-adic uniformization

Brie�y recall the notion of p-divisible group, isogeny and the rigidity theorem [13, Lemma
2.9]. De�ne special formal OB-modules and their moduli space N as in [8, �1].

De�ne the Bruhat-Tits tree B and the formal p-adic upper half-plane Ω̂ as in [8]. Endow
both N and Ω̂• with an action of GL2(Qp) and state the existence of a GL2(Qp)-
equivariant isomorphism between N and Ω̂•W . Describe this isomorphism on geometric
points.

Explain the p-adic uniformization of M at a prime p | D(B) as in [11, Theorem 3.2.3]
and [4, Chapter III.5]. The crucial point here is the construction of the abelian surface
with OB-action on Ω̂•W ×H(Apf ). Take your time to explain this. Deduce thatM has
semi-stable reduction at the primes dividing D(B).

3.3 Tuesday III: Special cycles on Ω̂

The reference for this talk is [8], the main results are Lemmas 4.9 and 6.2. They will be
needed in the next talk to prove the modularity of various series.

De�ne the space V , give De�nition 2.1, prove Proposition 2.1 and state Proposition 2.2.
Your next aim is to determine the set T (j). Prove Lemma 2.7 and formulate Corollary
2.5.
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Prove Theorem 3.1 which follows directly from the moduli description of Ω̂. Use this
to describe Z(j) on the ordinary locus by equations. Omit the computation of Z(j) at
supersingular points. Give Proposition 3.2 and sketch its proof. Mention that there are
embedded components at the superspecial points and that there can be an additional
horizontal component. If you like, draw the picture from page 9.

De�ne the puri�cation Z(h)pure and give Proposition 4.5. Recall the de�nition of the
intersection number (4.6) for two closed formal subschemes Z,Z ′ such that the intersec-
tion Z ∩Z ′ is a proper scheme over Spf W . Note that this is additive for sums of formal
divisors. You can also mention Lemma 4.3.

Conclude your talk by proving Lemma 4.9 and Lemma 6.2.

3.4 Wednesday: (Algebraic) Special cycles onM and their ver-
tical components

De�ne the space of special endomorphisms of an abelian surface with action by OB as in
[11, �3.4]. De�ne the special cycle Z(t) and describe its complex uniformization. State
the results about the degree of the horizontal component, see (3.4.4) and [10, Proposition
7.1]. Give [11, Prop 3.4.5] about the �atness of Z(t) away from D(B).

De�ne the Cohen-Macaulay�cation (or puri�cation), see [10, page 54]. Explain the p-
adic uniformization of Z(t) as in [11, �4.3]. State Proposition 4.3.2 and prove it for
p 6= 2. Explain that the multiplicity µ[Λ](x) is induced from a Schwartz function on
V ′(Qp). It is not so important for us to know this function explicitly.

Conclude your talk by stating and proving [11, Theorem 4.3.4]. We will show in later
talks that φVert is a component of φ̂, just give (4.3.18) as an ad hoc de�nition.

4 Arithmetic cycles on Shimura curves

For basic de�nitions of Arakelov theory, see [3] or [15].

4.1 Thursday I: Intersection theory on regular surfaces

Recall the notion of a metrized line bundle on an arithmetic variety to de�ne P̂ic. For
a stack, the metric line bundle lives on a presentation and is endowed with a descent
datum. As an important example, endow the Hodge bundle of an abelian scheme over
a complex variety with a metric, see [11, �3.3].

Work through [11, �2.1] to de�ne the Arakelov degree of metrized line bundles on one-
dimensional Deligne-Mumford stacks. Mention the de�nitions from 2.2 (i.e. generalize
the familiar notions from schemes to stacks.)

De�ne Green functions for divisors on orbifolds as in [11, �2.3]. Also recall the meaning
of Green's equation.

De�ne the �rst arithmetic Chow group ĈH
1

Z(M) and give the isomorphism with P̂ic(M).
End your talk by de�ning the Arakelov height pairing as in [11, �2.6]. Mention that this

de�nes the Arakelov intersection pairing on ĈH
1
by using the isomorphism with P̂ic,

see (2.5.13).
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4.2 Thursday II: Special cycles in arithmetic Chow groups

Endow the cycles Z(t) with Green functions and de�ne their class in ĈH
1
(M) as in [11,

�3.5]. You can �nd more details on this in [7, �10 and �11]. Note that this also de�nes
arithmetic cycles for t < 0. Give the de�nition of Ẑ(0, v) from (4.2.4) and de�ne the
generating series φ̂ = φ̂1. State Theorem A, the central theorem of this summer school.
Explain the meaning of this theorem, see the introduction of [11].

Prove the decomposition of ĈH
1
(M)R as in [11, �4.1] with the desired amount of details.

Make this decomposition explicit, see Proposition 4.1.4. Apply the decomposition to φ̂
to get the component functions (4.2.7-11). Explain that the vertical component (4.2.9)
is essentially the generating series from the talk of Wednesday, see (4.3.17-18).

4.3 Thursday III: Faltings heights of CM elliptic curves

The aim of this and the following talk is to compute the horizontal term in the Hodge
component of φ̂. Ideally, the speaker knows something about the Faltings heights of CM
elliptic curves.

Start with the Hodge component of φ̂ and deduce [10, (9.12)]. Recall the de�nition of
the height of an abelian variety, see [10, (10.3)]. Follow the �rst chapter of Raynaud
[14] to explain how the height changes under isogeny, see Proposition 1.4.1 there. You
can restrict to the good reduction case. Also see [10, (10.18)].

Introduce the isogeny we are interested in from pages 43 and 44 of [10]. It involves two
copies of an elliptic curve with CM by OK . Use the rest of the talk to say something
about the computation of the height of a CM elliptic curve, see [10, Proposition 10.10].

4.4 Friday I: The change under isogeny

The aim of this talk is to compute the third summand in [10, (10.18)]. This will prove
[10, Theorem 10.8] which explicitly computes one summand appearing in the Fourier
coe�cients of the Hodge component of φ̂, see [10, (9.12)]. Note that the previous talk
introduced most of �10 in [10] up to (10.19).

Reduce the computation of δ(u) to a computation with p-divisible groups. Recall the
de�nition of the p-adic Tate module and its relation with isogenies as in �2 of [17]. You
will also need Theorem 2.1 which describes isogenies with power series in a very explicit
way.

Follow [10] in proving Theorem 10.8. Note that there are essentially three cases for
δv(u). The most interesting one is Proposition 10.2 i), so you can concentrate on this
case. For this, prove Proposition 10.3. Note that G0 is the canonical lift, which is
a Lubin-Tate module for O. So for the Newton polygon argument, you can assume
[π](X) = X(π +Xq−1), see [17].

Combine all results into Theorems 10.7 and 10.8. Note that h∗Fal(E) was computed in
the previous talk.

4.5 Friday II: Modularity of the Mordell-Weil component

Recall the de�nition of the Mordell-Weil component, see [11, (4.2.11)]. Follow Kudla
through �4.5 and �4.6 of [11] to explain its modularity, see [11, Proposition 4.5.2]. If you
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want, you can also say something about the proof of Theorem 4.6.1. Once the existence
of the Borcherds' lift is assumed, this proof is not very di�cult, see [2].

4.6 Friday III: Modularity of the analytic component

Recall the de�nition of the analytic components, see (4.2.10) and (4.1.34)-(4.1.35) in
[11]. Follow Kudla through 4.4 to prove the modularity of the analytic component with
the desired amount of details. If there is an introduction on Sunday, this talk will be
dropped.

5 Appendix

5.1 Proof for [17, Theorem 1.4] in the unrami�ed case

Remark 5.1. In principle, we use the same line of reasoning as in �1 of [17]. But Lemma
1.3 there cannot be proved as stated since [16, Corollary 3.4.1] cannot be used outside
of characteristic p. We implicitly give a correction here, at least for the unrami�ed case.

Let L/K be an unrami�ed extension of p-adic �elds with uniformizer π ∈ K. LetW/OL
be the relative Witt vectors with maximal ideal m and set Wn := W/mn+1. Let F/W
be a formal OL-module such that its reduction F ⊗W0 is of height 1. In other words,
F is a Lubin-Tate module for OL and we can assume that multiplication by π is given
by the power series

[π](X) := πX +Xq2

where q is the cardinality of the residue �eld of K. We view F as the canonical lift for
the underlying formal OK-module of height 2 with action of OL.

Let Fn := F ⊗Wn and Hn := End(Fn). Reduction of endomorphisms de�nes injections
(see Lemma 2.6 in [16]) Hn+1 ⊂ Hn. It is known (see Theorem 1.1 of [17]) that H0 is
isomorphic to the maximal order in a quaternion division algebra over K. We choose a
uniformizer Π ∈ H0, i.e. an endomorphism of height 1.

Now let f ∈ (OL + ΠlH0) \ (OL + Πl+1H0). In other words, the height of f is odd and
equals l.

Claim: f ∈ Hbl/2c \ Hbl/2c+1 and the lift in Wbl/2c[[X]] has leading term αXq with
vπ(α) = bl/2c.

We �rst prove this for l = 1. Let

f̃(X) =

∞∑
i=1

aiX
i ∈W [[X]]

be any (!) power series lift of f . Note that vπ(ai) ≥ 1 if i 6= q and vπ(aq) = 0. We
compute

δπ(f̃) = f̃(πX +Xq2)−F (πf̃(X) + f̃(X)q
2

) mod m2

≡ −aqπXq mod (m2, Xq+1).

So the cocycle never vanishes and thus f /∈ H1. The claim about the leading term is
clear.
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For the induction step, we need Lemma 3.1 [16]. Let f be of height l+ 2 ≥ 3 and write
f = πg with g of height l. By induction, g ∈ Hbl/2c \Hbl/2c+1.

Let g̃ ∈W [[X]] be a power series lift of g ∈ Hbl/2c and de�ne

ε := g̃ ◦ [π]−F [π] ◦ g̃.

Since g is OK-linear, ε ∈ mbl/2c+1[[X]]. Now f̃ := [π] ◦ g̃ is a power series lift of f and
the power series [π] commutes with the group law. (This is the crucial trick.) Then

δπ(f̃) ≡ [π] ◦ ε mod mbl/2c+2

= 0.

By Lemma 3.1, f ∈ Hbl/2c+1 and this lift is given by [π] ◦ g̃, which also proves the
claim about the leading term. To check that f does not lift further, one uses the same
argument as in the case l = 1 using the the leading term.
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