Period differential equation for a family of $K 3$ surfaces in connection with the Hilbert modular group of $\boldsymbol{Q}(\sqrt{5})$

H. Shiga, According to Master thesis of Atsuhira NAGANO (Waseda Univ.)

Jan. 14, 2010, Zurich ETH

Outline

Algebraic $K 3$ surface is characterized as a deformation of a nonsingular quartic surface in \boldsymbol{P}^{3}. It suggests that the $K 3$ surface is a 2-dimensional analogy of the elliptic curve (namely the non singular cubic curve in \boldsymbol{P}^{2}).

The elliptic modular function $j(\tau)$ or $\lambda(\tau)$ is obtained as the inverse of the Schwarz map for a Gauss HGDE. In this case Gauss HGDE is a period differential equation for a family of elliptic curves.

On the other hand, a $K 3$ surface S is characterized by the condition $K_{S}=0$ and simply connected. It means that S is a two dimensional Calabi-Yau manifold. From this aspect the inverse Schwarz map is called "mirror map".

We are looking for a nice two dimensional analogy of this context. We say it the theory of "K3 modular function".

For this purpose we use the notion of 3 -dimensional reflexive polytope with at most terminal singularity. Such a polytope P is defined by the intersection of several half spaces

$$
a_{i} x+b_{i} y+c_{i} z \leq 1,\left(a_{i}, b_{i}, c_{i}\right) \in \boldsymbol{Z}^{3}, i=1, \ldots, k
$$

with the condition
(i) the origin is the unique inner lattice point,
(ii) only the vertices are the lattice points on the boundary.

We have 5 such polytopes with 5 vertices ([O]):

$$
\begin{aligned}
P_{2} & =\left(\begin{array}{ccccc}
1 & 0 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & 0 & -1
\end{array}\right), P_{3}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 & -1 \\
0 & 0 & 1 & -1 & -1
\end{array}\right), P_{4}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 & -1 \\
0 & 0 & 1 & -1 & -2
\end{array}\right), \\
P_{5} & =\left(\begin{array}{ccccc}
1 & 0 & 0 & -1 & -1 \\
0 & 1 & 0 & -1 & -1 \\
0 & 0 & 1 & 0 & -1
\end{array}\right), P_{r}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & -1 & -1
\end{array}\right),
\end{aligned}
$$

here the column vectors indicate the vertices.
For every such a reflexive polytope we can find a corresponding 2-paramers family of $K 3$ surfaces. We are going to study the family of $K 3$ surfaces coming from P_{4}.

1 Family of $K 3$ surfaces attached to P_{4}

As a principle we get the required family of algebraic surfaces by the following canonical procedure:
(i) Make a toric three fold X from the reflexive polytope. This is a rational variety with some singularity.
(ii) Take a divisor D on X that is linear equivalent to $-K_{X}$.
(iii) By the terminal condition D is represented by a $K 3$ surface.

This procedure is realized by the following algebraic surfaces in \boldsymbol{P}^{3} with 2 parameters λ, μ :

At first D is given by

$$
a_{1}+a_{2} t_{1}+a_{3} t_{2}+a_{4} t_{3}+a_{5} \frac{1}{t_{3}}+a_{6} \frac{1}{t_{1} t_{2} t_{3}^{2}}=0
$$

in $\left(t_{1}, t_{2}, t_{3}\right)$ - space. Compare with

$$
P_{4}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 & -1 \\
0 & 0 & 1 & -1 & -2
\end{array}\right)
$$

By changing the variables and parameters at a sametime

$$
\left\{\begin{array}{l}
x=a_{2} t_{1} / a_{1}, \tag{1.1}\\
y=a_{3} t_{2} / a_{1}, \\
z=a_{4} t_{3} / a_{1}, \\
\lambda=a_{4} a_{5} / a_{1}^{2}, \\
\mu=a_{2} a_{3} a_{4}^{2} a_{6} / a_{1}^{5}
\end{array}\right.
$$

we get a family

$$
\mathscr{F}=\{S(\lambda, \mu)\}_{\lambda, \mu}
$$

of $K 3$ surfaces

$$
\begin{equation*}
S(\lambda, \mu): x y z^{2}(x+y+z+1)+\lambda x y z+\mu=0 . \tag{1.2}
\end{equation*}
$$

We set

$$
F(x, y, z)=x y z^{2}(x+y+z+1)+\lambda x y z+\mu
$$

The projection map

$$
S(\lambda, \mu) \rightarrow z \text {-plane }
$$

make it an elliptic fibered surface over \boldsymbol{P}^{1}.
[About $K 3$ surface S]
(a) There exists unique (up to constant factor) (non-vanishing) holomorphic 2-form ω.
(b) The 2nd homology group $H_{2}(S, \boldsymbol{Z})$ is a free \boldsymbol{Z} module of rank 22.
(c) The intersection form of $H_{2}(S, \boldsymbol{Z})$ is isomorphic to $E_{8}(-1) \oplus E_{8}(-1) \oplus U \oplus U \oplus U$,

$$
E_{8}(-1)=\left(\begin{array}{cccccccc}
-2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & -2 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -2
\end{array}\right), U=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

(d) An elliptic fibered algebraic surface S over \boldsymbol{P}^{1} is a $K 3$ if and only if $\chi(S)=24$, provided S is a minimal nonsingular model.
(e) Let $\left\{\Gamma_{1}, \ldots, \Gamma_{22}\right\}$ be a basis of $H_{2}(S, \boldsymbol{Z})$.

$$
\eta^{\prime}=\left(\int_{\Gamma_{1}} \omega: \ldots: \int_{\Gamma_{22}} \omega\right) \in \boldsymbol{P}^{21}
$$

is said to be a periods of S.
(f) The Neron-Severi lattice $\operatorname{NS}(S)$ is the sublattice of $H_{2}(S, \boldsymbol{Z})$ generated by the divisors on S.
$\mathrm{T}(S)=\mathrm{NS}(S)^{\perp}$ is said to be the transcendental lattice of S. Let $\Gamma_{1}, \ldots, \Gamma_{r}$ be a basis of $\mathrm{T}(S)$. Note

$$
\int_{\Gamma} \omega=0 \quad \forall \Gamma \in \mathrm{NS}(S)
$$

So the periods η^{\prime} reduces to

$$
\eta=\left(\int_{\Gamma_{1}} \omega: \ldots: \int_{\Gamma_{r}} \omega\right) \in \boldsymbol{P}^{r-1}
$$

We note here that $\operatorname{NS}(S)$ is always with signature $(1, \cdot)$ and $\mathrm{T}(S)$ is always with signature $(2, \cdot)$.
(g) We have the Riemann-Hodge relation for the periods:

$$
\begin{aligned}
& \eta^{\prime} M^{-1 t} \eta^{\prime}=0 \\
& \eta^{\prime} M^{-1 t} \overline{\eta^{\prime}}>0
\end{aligned}
$$

where M is the intersection matrix $\left(\Gamma_{i} \cdot \Gamma_{j}\right)_{i, j}$. By this relation we always have the period in a type $I V$ domain \mathscr{D} of dimension $r-2$ dfined by

$$
\mathscr{D}=\left\{\eta \in \boldsymbol{P}^{r-1}: \eta A^{t} \eta=0, \eta A^{t} \bar{\eta}>0\right\}
$$

here A is the intersection matrix of $\mathrm{T}(S)$. Note that \mathscr{D} is composed of two connected components \mathscr{D}^{+}and \mathscr{D}^{-}.

2 Period map for \mathscr{F}

By some fiber preserving birational transformation, we can describe $S(\lambda, \mu)$ in the form

$$
y_{1}^{2}=4 x_{1}^{3}-g_{2}(z) x_{1}-g_{3}(z),
$$

where $g_{2}\left(g_{3}\right.$, resp. $)$ is a polynomial of z of degree $8(12$, resp.). This is an analogy of the Weierstrass normal form of the elliptic curve.

Set the discriminant $D_{x_{1}}(z)=g_{2}^{3}+27 g_{3}^{2}$. We know that generically it has triple zero at $z=0$, zero of multiplicity 15 at $z=\infty$ and other 6 simple zeros. So $S(\lambda, \mu)$ has singular fibres there. Sometimes we have a confluence of these singular fibers. We can observe them by the zero locus of the discriminant δ of $D_{x_{1}}(z)$ w.r.t. z.

Proposition 2.1. We have the degenerating locus

$$
\begin{equation*}
\delta=\lambda \mu\left(\lambda^{2}(4 \lambda-1)^{3}-2(2+25 \lambda(20 \lambda-1)) \mu-3125 \mu^{2}\right)=0 . \tag{2.1}
\end{equation*}
$$

Outside $\delta, S(\lambda, \mu)$ has a composition of singular fibers $I_{3}+I_{15}+6 I_{1}$.

Figure 1. singular fibers of $S(\lambda, \mu)$

Consequently we have $\chi(S(\lambda, \mu))=24$, namely it is a $K 3$ surface. The unique holomorphic form is given by

$$
\omega=\frac{z d z \wedge d x}{\partial_{y} F} .
$$

Figure 1. Degenerating locus δ

Set

$$
\Lambda=\boldsymbol{C}^{2}-\delta
$$

As a topological fiber space $\mathscr{F}_{\mid \Lambda} \rightarrow \Lambda$ is locally trivial. We have a parametrization

$$
\begin{aligned}
& \lambda(a)=\frac{(a-1)(a+1)}{5}, \\
& \mu(a)=\frac{(2 a-3)^{3}(a+1)^{2}}{3125}
\end{aligned}
$$

of the third component of δ.
Theorem 2.1. For a generic point λ, μ we have

$$
\begin{gather*}
\operatorname{NS}(S(\lambda, \mu)): M_{0} \cong\left(\begin{array}{cccc}
E_{8}(-1) & & & \\
& & E_{8}(-1) & \\
& & & \\
& & & \\
& 1 & -2
\end{array}\right), \tag{2.2}\\
\mathrm{T}(S(\lambda, \mu)): A \cong\left(\begin{array}{cccc}
0 & 1 & & \\
1 & 0 & & \\
& & 2 & 1 \\
& & 1 & -2
\end{array}\right) . \tag{2.3}
\end{gather*}
$$

Definition 2.1. Let $\Gamma_{1}, \ldots, \Gamma_{4}$ be a basis of $\mathrm{T}(S(\lambda, \mu))$ with

$$
\left(\Gamma_{i} \cdot \Gamma_{j}\right)=A .
$$

We take periods $\eta(\lambda, \mu)$ in a neighborhood of one fixed point (λ, μ), and let us make the analytic continuation in Λ. Then we obtain a multivalued analytic map

$$
\Phi: \Lambda \rightarrow \mathscr{D} .
$$

We call it the period map for \mathscr{F}. Let us assume $\Phi(\Lambda) \subset \mathscr{D}^{+}$. By virtue of the Torelli theorem for $K 3$ surfaces, we know that $\Phi(\Lambda)$ is dense open in \mathscr{D}^{+}.

3 Results

3.1 Period as a hypergeometric series

For a small parameters λ, μ, we have a lift of a small torus $\{|x|=\varepsilon\} \times\{|z|=\varepsilon\}(\varepsilon>0)$ on $S(\lambda, \mu)$. It determines a 2 -cycle $\Gamma \in H_{2}(S(\lambda, \mu), \boldsymbol{Z})$.

Theorem 3.1. We have

$$
\begin{equation*}
\eta(\lambda, \mu)=\int_{\Gamma} \omega=(2 \pi i)^{2} \sum_{n, m=0}^{\infty}(-1)^{m} \frac{(5 m+2 n)!}{n!(m!)^{3}(2 m+n)!} \lambda^{n} \mu^{m} . \tag{3.1}
\end{equation*}
$$

It is holomorphic in a neighborhood of the origin.

3.2 Period differential equation

Proposition 3.1. Every period $\eta_{1}(\lambda, \mu), \ldots, \eta_{4}(\lambda, \mu)$ satisfies the system of differential equations:

$$
\left\{\begin{array}{l}
L_{1}=\theta_{\lambda}\left(\theta_{\lambda}+2 \theta_{\mu}\right)-\lambda\left(2 \theta_{\lambda}+5 \theta_{\mu}+1\right)\left(2 \theta_{\lambda}+5 \theta_{\mu}+2\right) \tag{3.2}\\
L_{3}=\lambda^{2} \theta_{\mu}^{3}+\mu \theta_{\lambda}\left(\theta_{\lambda}-1\right)\left(2 \theta_{\lambda}+5 \theta_{\mu}+1\right)
\end{array}\right.
$$

where $\theta_{\lambda}=\lambda \partial_{\lambda}, \theta_{\mu}=\mu \partial_{\mu}$.
This is a so called $G K Z$ hypergeometric differential equation that is induced from the starting polytope in a usual way. But it has a 6 -dimensional vector space of solutions. It is too much. Our vecor space generated by periods in a n.b.d. of a fixed point (λ, μ) is 4-dimensional. We can describe the required differential equation as its subsystem:

Theorem 3.2. (Period differential equation)
The system of periods $\left\{\eta_{1}(\lambda, \mu), \ldots, \eta_{4}(\lambda, \mu)\right\}$ generates the the vector space of the solutions of the differential equation $L_{1}=L_{2}=0$ with

$$
\left\{\begin{array}{l}
L_{1}=\theta_{\lambda}\left(\theta_{\lambda}+2 \theta_{\mu}\right)-\lambda\left(2 \theta_{\lambda}+5 \theta_{\mu}+1\right)\left(2 \theta_{\lambda}+5 \theta_{\mu}+2\right), \\
L_{2}=\lambda^{2}\left(4 \theta_{\lambda}^{2}-2 \theta_{\lambda} \theta_{\mu}+5 \theta_{\mu}^{2}\right)-8 \lambda^{3}\left(1+3 \theta_{\lambda}+5 \theta_{\mu}+2 \theta_{\lambda}^{2}+5 \theta_{\lambda} \theta_{\mu}\right)+25 \mu \theta_{\lambda}\left(\theta_{\lambda}-1\right) .
\end{array}\right.
$$

Consequently the projective monodromy group of Φ coincides with that of the system $L_{1}=$ $L_{2}=0$.

3.3 The Hilbert modular group as the monodromy group

Theorem 3.3. (Characterization of the monodromy group)
The projective monodromy group of Φ for the basis $\left\{\eta_{1}(\lambda, \mu), \ldots, \eta_{4}(\lambda, \mu)\right\}$ is isomorphic to $P O(A, \boldsymbol{Z})^{+}=\left\{g \in M(4, \boldsymbol{Z}):^{t} g A g=A, g\left(\mathscr{D}^{+}\right)=\mathscr{D}^{+}\right\} / \pm I_{4}$.

Definition 3.1. Let \boldsymbol{H}^{-}be the lower half complex plane. Set $k=\boldsymbol{Q}(\sqrt{5})$, and set $\mathscr{O}_{k}=$ $\boldsymbol{Z}\left[\frac{1+\sqrt{5}}{2}\right]$ be the ring of integers in k. The group $\operatorname{PSL}\left(2, \mathscr{O}_{k}\right)$ acts on $\boldsymbol{H} \times \boldsymbol{H}^{-}$by

$$
\left(\begin{array}{ll}
\alpha & \beta \tag{3.4}\\
\gamma & \delta
\end{array}\right):\left(\tau_{1}, \tau_{2}\right) \mapsto\left(\frac{\alpha \tau_{1}+\beta}{\gamma \tau_{1}+\delta}, \frac{\alpha^{\prime} \tau_{2}+\beta^{\prime}}{\gamma^{\prime} \tau_{2}+\delta^{\prime}}\right)
$$

here $g=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \operatorname{PSL}\left(2, \mathscr{O}_{k}\right)$ and ${ }^{\prime}$ indicates the conjugate in k. In this situation we call $\operatorname{PSL}\left(2, \mathscr{O}_{k}\right)$ the Hilbert modular group of k.

Theorem 3.4. The pair $\left(\mathscr{D}^{+}, P O(A, \boldsymbol{Z})^{+}\right)$is mudular equivalent over \mathscr{O}_{k} with the Hilbert modular space $\left(\boldsymbol{H} \times \boldsymbol{H}^{-}, \operatorname{PSL}\left(2, \mathscr{O}_{k}\right) \times \mid\langle\sigma\rangle\right)$, where

$$
\sigma:\left(\tau_{1}, \tau_{2}\right) \mapsto\left(\frac{1}{\tau_{2}}, \frac{1}{\tau_{1}}\right)
$$

Remark 3.1. We can describe the exact correspondence between above two moduli spaces as the following. Set

$$
W=\left(\begin{array}{cc}
(-1+\sqrt{5}) / 2 & (-1-\sqrt{5}) / 2 \\
1 & 1
\end{array}\right) .
$$

It holds

$$
A=U \oplus\left(\begin{array}{cc}
2 & 1 \\
1 & -2
\end{array}\right)=U \oplus W(-U)^{t} W
$$

The correspondence

$$
\left(\tau_{1}, \tau_{2}\right) \mapsto\left(I_{2} \oplus{ }^{t} W^{-1}\right)\left(\begin{array}{c}
\tau_{1} \tau_{2} \\
1 \\
\tau_{1} \\
\tau_{2}
\end{array}\right)
$$

defines a biholomorphic isomorphism

$$
\iota:\left(\boldsymbol{H} \times \boldsymbol{H}^{-}\right) \cup\left(\boldsymbol{H}^{-} \times \boldsymbol{H}\right) \rightarrow \mathscr{D}
$$

Set $\rho(g)=\iota \circ g \circ \iota^{-1}$ for $g \in P S L\left(2, \mathscr{O}_{k}\right) \times \mid\langle\sigma\rangle$. In an explicit form we have

$$
\rho\left(\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\right)=\left(I_{2} \oplus^{t} W\right)^{-1}\left(\begin{array}{cccc}
\alpha & 0 & 0 & \beta \\
0 & \delta & \gamma & 0 \\
0 & \beta & \alpha & 0 \\
\gamma & 0 & 0 & \delta
\end{array}\right)\left(\begin{array}{cccc}
\alpha^{\prime} & 0 & \beta^{\prime} & 0 \\
0 & \delta^{\prime} & 0 & \gamma^{\prime} \\
\gamma^{\prime} & 0 & \delta^{\prime} & 0 \\
0 & \beta^{\prime} & 0 & \alpha
\end{array}\right)\left(I_{2} \oplus^{t} W\right)
$$

and

$$
\rho(\sigma)=H_{2}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

The pair (ι, ρ) gives the required isomorphism of the two modular spaces.

References

[B] Victor Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varietys, J. Algebraic Geometry 3, 1994, 493-535.
[I] Toshimasa Ishige, A Family of K3 Surfaces connected with the Hilbert Modular Group for $\boldsymbol{Q}(\sqrt{2})$ and the GKZ Hypergeometric Differential Equation, preprint, 2010.
[K] Kenji Koike, K3 surfaces induced from Polytopes Master Thesis, Chiba Univ. ,1998.
[O] Makoto Otsuka, 3 dimensional reflexive polytopes Master Thesis, Chiba Univ. ,1998.
[N] Atsuhira Nagano, Period differential equation for families of K3 surfaces induced from 3 dimensional polytopes with 5 vertices Master Thesis, Waseda Univ. ,2010.

