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Outline

Algebraic K3 surface is characterized as a deformation of a nonsingular quartic surface in
P3. Tt suggests that the K3 surface is a 2-dimensional analogy of the elliptic curve (namely
the non singular cubic curve in P?).

The elliptic modular function j(7) or A\(7) is obtained as the inverse of the Schwarz map
for a Gauss HGDE. In this case Gauss HGDE is a period differential equation for a family
of elliptic curves.

On the other hand, a K3 surface S is characterized by the condition Kg = 0 and simply
connected. It means that S is a two dimensional Calabi-Yau manifold. From this aspect the
inverse Schwarz map is called ”mirror map”.

We are looking for a nice two dimensional analogy of this context. We say it the theory
of ” K3 modular function”.

For this purpose we use the notion of 3-dimensional reflexive polytope with at most
terminal singularity. Such a polytope P is defined by the intersection of several half spaces

a;x + by + iz < 1, (az,bi,c) € Z3i=1,...k

with the condition
(i) the origin is the unique inner lattice point,
(ii) only the vertices are the lattice points on the boundary.
We have 5 such polytopes with 5 vertices ([O]):

100 -1 0 100 0 -1 100 0 -1

=010 -1 o|,=(010 0 -1],P=l010 0 -1
001 0 -1 00 1 -1 -1 00 1 —1 -2
100 -1 -1 100 0 -1

Ps=(0o 10 -1 -1],p=[010 -1 0],
001 0 -1 00 1 -1 -1

here the column vectors indicate the vertices.
For every such a reflexive polytope we can find a corresponding 2-paramers family of K3
surfaces. We are going to study the family of K3 surfaces coming from P;.



1 Family of K3 surfaces attached to P;

As a principle we get the required family of algebraic surfaces by the following canonical
procedure:

(i) Make a toric three fold X from the reflexive polytope. This is a rational variety with
some singularity.

(ii) Take a divisor D on X that is linear equivalent to —Kx.

(iii) By the terminal condition D is represented by a K3 surface.

This procedure is realized by the following algebraic surfaces in P? with 2 parameters
A, e

At first D is given by

1

1
a1 + asty + aste + aygts + as— + a6——5 = 0
ts tytot2
in (t1,t2,t3)- space. Compare with
100 0 -1
P=(0 1 0 0 -1
0 01 -1 -2
By changing the variables and parameters at a sametime
xr = agtl/al,
y = agtz/a1,
z = astz/as, (1.1)
A\ = agas/a?,
W = asazaiag/aj
we get a family
F ={S(\ 1)iru
of K3 surfaces
S\ p) :xy2®(x+y+2z+ 1)+ eyz +p = 0. (1.2)

We set
F(z,y,2) =ayz*(x +y+ 2+ 1) + Azyz + .

The projection map

S(A, p) — z-plane

make it an elliptic fibered surface over P?.



[About K3 surface S]

(a) There exists unique (up to constant factor) (non-vanishing) holomorphic 2-form w.
(b) The 2nd homology group Hs(S, Z) is a free Z module of rank 22.

(¢) The intersection form of Hy(S, Z) is isomorphic to Eg(—1) ® Es(—1) U e U @ U,

-2 1 0 0 0 0 0 0

1 =21 0 0 0 0 0

0 1 -2 1 1 0 0 0

0 0 1 -2 0 0 0 0 0 1
EBCD=19 0o 1 0 -2 1 0 o ’U:<1 0)

0 0 0 0 1 -2 1 0

o 0 0 0 0 1 -2 1

0O 0 0 0 0 0 1 -2

(d) An elliptic fibered algebraic surface S over P! is a K3 if and only if x(S) = 24,
provided S is a minimal nonsingular model.

(e) Let {T'y,...,T'22} be a basis of Hy(S, Z).
77’:(/ w:...:/ w) € P*
Iy a2
is said to be a periods of S.

(f) The Neron-Severi lattice NS(S) is the sublattice of Hz(S, Z) generated by the divisors
on S.

T(S) = NS(S)* is said to be the transcendental lattice of S. Let I'y,..., T, be a basis
of T(S). Note

/w:O VT € NS(S).
I

n(/Flw:m:/prw)EPTI'

We note here that NS(S) is always with signature (1,-) and T(S) is always with signature

(27 )

(g) We have the Riemann-Hodge relation for the periods:

So the periods 7’ reduces to

n/M—ltn/ _ 07
n’ M~y >0,

where M is the intersection matrix (I'; - I';); ;. By this relation we always have the period
in a type IV domain Z of dimension r — 2 dfined by

2 ={ne P :nAn=0,nA"] > 0},

here A is the intersection matrix of T(S). Note that 2 is composed of two connected
components 21 and 2.



2 Period map for ¥

By some fiber preserving birational transformation, we can describe S(A, u) in the form
yi = 4at — ga(2)x1 — g3(2),

where g2(gs,resp.) is a polynomial of z of degree 8(12, resp.). This is an analogy of the
Weierstrass normal form of the elliptic curve.

Set the discriminant D,, (2) = g5 + 27g3. We know that generically it has triple zero at
z = 0, zero of multiplicity 15 at z = co and other 6 simple zeros. So S(A, 1) has singular
fibres there. Sometimes we have a confluence of these singular fibers. We can observe them
by the zero locus of the discriminant ¢ of D,, (z) w.r.t. z.

Proposition 2.1. We have the degenerating locus
§ = A A2(4\ — 1)3 — 2(2 + 250(20\ — 1))p — 31254%) = 0. (2.1)

Outside 6, S(A\, i) has a composition of singular fibers I3 + I15 + 617.

z

0 ©
Figure 1. singular fibers of S(\, )

Consequently we have x(S(\, 1)) = 24, namely it is a K3 surface. The unique holomor-
phic form is given by

_zdzNdz
0, F
0. 005;
-0.2 0.2 0.4 0.6 0.8 1
-0/005¢
-0.01}
-0. 015+

Figure 1. Degenerating locus 0

Set
A=C?%—.



As a topological fiber space .7, — A is locally trivial. We have a parametrization

Ma) = (a— 1)5(a—|—1)7
~ (2a—3)*(a+1)?
pla) = 3125

of the third component of 4.

Theorem 2.1. For a generic point A\, u we have

Eg(-1)
NS(S(A, 1)) : My = : (2:2)

_= O
O =

TS\ ) : A= . (2.3)
1 -2

Definition 2.1. Let I'y,..., Ty be a basis of T(S(A, u)) with
(I';-Ty) = A

We take periods n(\, p) in a neighborhood of one fixed point (A, u), and let us make the
analytic continuation in A. Then we obtain a multivalued analytic map

d:A— 9.

We call it the period map for F. Let us assume ®(A) C 27. By virtue of the Torelli
theorem for K3 surfaces, we know that ®(A) is dense open in D7 .



3 Results

3.1 Period as a hypergeometric series

For a small parameters X, i, we have a lift of a small torus {|z| = ¢} x {|z] =€} (¢ > 0) on
S(A, ). It determines a 2-cycle I' € Ha(S(A, 1), Z).

Theorem 3.1. We have

ww) = [o=(emip 3 (am Lt B, (3.)
PR e |

It is holomorphic in a neighborhood of the origin.

3.2 Period differential equation

Proposition 3.1. Every period ni (A, 1), ..., na(A, ) satisfies the system of differential equa-
tions:

(3.2)

Ly = (9,\((9)\ + QQM) — )\(29,\ + 59# + 1)(29,\ + 59# +2),
Ly = /\292 + ufx(0x — 1)(205 + 50, + 1),

where 0y = A0y, 0, = u0,.

This is a so called GKZ hypergeometric differential equation that is induced from the
starting polytope in a usual way. But it has a 6-dimensional vector space of solutions. It
is too much. Our vecor space generated by periods in a n.b.d. of a fixed point (A, u) is
4-dimensional. We can describe the required differential equation as its subsystem:

Theorem 3.2. (Period differential equation)
The system of periods {m (X, ), ..., na(X, )} generates the the vector space of the solu-
tions of the differential equation Ly = Lo = 0 with

Ly :9/\<9)\+29M)_)‘(29/\+56H+1)(29/\+56N+2)7 (3.3)
Ly = M?(463 — 20x0,, 4 502) — 8A3(1 + 30 + 50, + 203 4 50x0,,) + 25005 (05 — 1).

Consequently the projective monodromy group of ® coincides with that of the system L1 =
Ly =0.
3.3 The Hilbert modular group as the monodromy group

Theorem 3.3. (Characterization of the monodromy group)
The projective monodromy group of ® for the basis {n1 (A, ), ..., na(A\, p)} is isomorphic
to PO(A,Z)T ={ge M(4,Z) :t1gAg=A,9(27) =29} + I4.

Definition 3.1. Let H™ be the lower half complex plane. Set k = Q(V/5), and set Oy, =
Z[H‘T\/g} be the ring of integers in k. The group PSL(2, Oy) acts on H x H™ by

a B . a1+ 06 o+
(’y 5) (11, 72) (’771 iy +5’) (3.4)

here g = (?; ?) € PSL(2,0)) and’ indicates the conjugate in k. In this situation we call

PSL(2, 0)) the Hilbert modular group of k.



Theorem 3.4. The pair (21, PO(A, Z)") is mudular equivalent over Oy, with the Hilbert
modular space (H x H~, PSL(2, 0y) x|{(c)), where

(1 1>
o:(m,m)——,—).
T2 T1

Remark 3.1. We can describe the exact correspondence between above two moduli spaces

Vo)

as the following. Set

W= ((1 +1\/5)/2 (-1-

1
It holds
A=Ua G _12> — U e W(-U)'W.
The correspondence
T1T2
1
(11, 72) = (o ®'W™Y)
1
T2

defines a biholomorphic isomorphism
1 (HxH ) )U(H™ xH)— 2.

Set p(g) =1ogoi™! for g€ PSL(2,0)) x|(c). In an explicit form we have

a 00 B\ /ad 0 8 0
a f B i1 |0 8 v O 0 & 0 o ;
p((w 5))“2@”/) 08 a 0|y o0 & oW
v~ 0 0 ¢ 0/ 0 «a
and

01 0 0
1 0 0 O
p(o) = Hy = 0010
0 0 0 1

The pair (i, p) gives the required isomorphism of the two modular spaces.
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