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Outline

Algebraic K3 surface is characterized as a deformation of a nonsingular quartic surface in
P 3. It suggests that the K3 surface is a 2-dimensional analogy of the elliptic curve (namely
the non singular cubic curve in P 2).

The elliptic modular function j(τ) or λ(τ) is obtained as the inverse of the Schwarz map
for a Gauss HGDE. In this case Gauss HGDE is a period differential equation for a family
of elliptic curves.

On the other hand, a K3 surface S is characterized by the condition KS = 0 and simply
connected. It means that S is a two dimensional Calabi-Yau manifold. From this aspect the
inverse Schwarz map is called ”mirror map”.

We are looking for a nice two dimensional analogy of this context. We say it the theory
of ”K3 modular function”.

For this purpose we use the notion of 3-dimensional reflexive polytope with at most
terminal singularity. Such a polytope P is defined by the intersection of several half spaces

aix + biy + ciz ≤ 1, (ai, bi, ci) ∈ Z3, i = 1, . . . , k

with the condition
(i) the origin is the unique inner lattice point,
(ii) only the vertices are the lattice points on the boundary.
We have 5 such polytopes with 5 vertices ([O]):

P2 =

1 0 0 −1 0
0 1 0 −1 0
0 0 1 0 −1

 , P3 =

1 0 0 0 −1
0 1 0 0 −1
0 0 1 −1 −1

 , P4 =

1 0 0 0 −1
0 1 0 0 −1
0 0 1 −1 −2

 ,

P5 =

1 0 0 −1 −1
0 1 0 −1 −1
0 0 1 0 −1

 , Pr =

1 0 0 0 −1
0 1 0 −1 0
0 0 1 −1 −1

 ,

here the column vectors indicate the vertices.
For every such a reflexive polytope we can find a corresponding 2-paramers family of K3

surfaces. We are going to study the family of K3 surfaces coming from P4.

1



1 Family of K3 surfaces attached to P4

As a principle we get the required family of algebraic surfaces by the following canonical
procedure:

(i) Make a toric three fold X from the reflexive polytope. This is a rational variety with
some singularity.

(ii) Take a divisor D on X that is linear equivalent to −KX .
(iii) By the terminal condition D is represented by a K3 surface.
This procedure is realized by the following algebraic surfaces in P 3 with 2 parameters

λ, µ:
At first D is given by

a1 + a2t1 + a3t2 + a4t3 + a5
1
t3

+ a6
1

t1t2t23
= 0

in (t1, t2, t3)- space. Compare with

P4 =

1 0 0 0 −1
0 1 0 0 −1
0 0 1 −1 −2

 .

By changing the variables and parameters at a sametime

x = a2t1/a1,

y = a3t2/a1,

z = a4t3/a1,

λ = a4a5/a2
1,

µ = a2a3a
2
4a6/a5

1

(1.1)

we get a family
F = {S(λ, µ)}λ,µ

of K3 surfaces

S(λ, µ) : xyz2(x + y + z + 1) + λxyz + µ = 0. (1.2)

We set
F (x, y, z) = xyz2(x + y + z + 1) + λxyz + µ.

The projection map
S(λ, µ) → z-plane

make it an elliptic fibered surface over P 1.
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[About K3 surface S]
(a) There exists unique (up to constant factor) (non-vanishing) holomorphic 2-form ω.
(b) The 2nd homology group H2(S, Z) is a free Z module of rank 22.
(c) The intersection form of H2(S, Z) is isomorphic to E8(−1) ⊕ E8(−1) ⊕ U ⊕ U ⊕ U ,

E8(−1) =



−2 1 0 0 0 0 0 0
1 −2 1 0 0 0 0 0
0 1 −2 1 1 0 0 0
0 0 1 −2 0 0 0 0
0 0 1 0 −2 1 0 0
0 0 0 0 1 −2 1 0
0 0 0 0 0 1 −2 1
0 0 0 0 0 0 1 −2


, U =

(
0 1
1 0

)
.

(d) An elliptic fibered algebraic surface S over P 1 is a K3 if and only if χ(S) = 24,
provided S is a minimal nonsingular model.

(e) Let {Γ1, . . . , Γ22} be a basis of H2(S, Z).

η′ = (
∫

Γ1

ω : . . . :
∫

Γ22

ω) ∈ P 21

is said to be a periods of S.
(f) The Neron-Severi lattice NS(S) is the sublattice of H2(S, Z) generated by the divisors

on S.
T(S) = NS(S)⊥ is said to be the transcendental lattice of S. Let Γ1, . . . , Γr be a basis

of T(S). Note ∫
Γ

ω = 0 ∀Γ ∈ NS(S).

So the periods η′ reduces to

η = (
∫

Γ1

ω : . . . :
∫

Γr

ω) ∈ P r−1.

We note here that NS(S) is always with signature (1, ·) and T(S) is always with signature
(2, ·).

(g) We have the Riemann-Hodge relation for the periods:

η′M−1tη′ = 0,

η′M−1tη′ > 0,

where M is the intersection matrix (Γi · Γj)i,j . By this relation we always have the period
in a type IV domain D of dimension r − 2 dfined by

D = {η ∈ P r−1 : ηAtη = 0, ηAtη > 0},

here A is the intersection matrix of T(S). Note that D is composed of two connected
components D+ and D−.
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2 Period map for F

By some fiber preserving birational transformation, we can describe S(λ, µ) in the form

y2
1 = 4x3

1 − g2(z)x1 − g3(z),

where g2(g3, resp.) is a polynomial of z of degree 8(12, resp.). This is an analogy of the
Weierstrass normal form of the elliptic curve.

Set the discriminant Dx1(z) = g3
2 + 27g2

3 . We know that generically it has triple zero at
z = 0, zero of multiplicity 15 at z = ∞ and other 6 simple zeros. So S(λ, µ) has singular
fibres there. Sometimes we have a confluence of these singular fibers. We can observe them
by the zero locus of the discriminant δ of Dx1(z) w.r.t. z.

Proposition 2.1. We have the degenerating locus

δ = λµ(λ2(4λ − 1)3 − 2(2 + 25λ(20λ − 1))µ − 3125µ2) = 0. (2.1)

Outside δ, S(λ, µ) has a composition of singular fibers I3 + I15 + 6I1.

0 ¥

z

Figure 1. singular fibers of S(λ, µ)

Consequently we have χ(S(λ, µ)) = 24, namely it is a K3 surface. The unique holomor-
phic form is given by

ω =
zdz ∧ dx

∂yF
.

-0.2 0.2 0.4 0.6 0.8 1

-0.015

-0.01

-0.005

0.005

Figure 1. Degenerating locus δ

Set
Λ = C2 − δ.
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As a topological fiber space F|Λ → Λ is locally trivial. We have a parametrization

λ(a) =
(a − 1)(a + 1)

5
,

µ(a) =
(2a − 3)3(a + 1)2

3125

of the third component of δ.

Theorem 2.1. For a generic point λ, µ we have

NS(S(λ, µ)) : M0
∼=


E8(−1)

E8(−1)
2 1
1 −2

 , (2.2)

T(S(λ, µ)) : A ∼=


0 1
1 0

2 1
1 −2

 . (2.3)

Definition 2.1. Let Γ1, . . . , Γ4 be a basis of T(S(λ, µ)) with

(Γi · Γj) = A.

We take periods η(λ, µ) in a neighborhood of one fixed point (λ, µ), and let us make the
analytic continuation in Λ. Then we obtain a multivalued analytic map

Φ : Λ → D .

We call it the period map for F . Let us assume Φ(Λ) ⊂ D+. By virtue of the Torelli
theorem for K3 surfaces, we know that Φ(Λ) is dense open in D+.
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3 Results

3.1 Period as a hypergeometric series

For a small parameters λ, µ, we have a lift of a small torus {|x| = ε} × {|z| = ε} (ε > 0) on
S(λ, µ). It determines a 2-cycle Γ ∈ H2(S(λ, µ), Z).

Theorem 3.1. We have

η(λ, µ) =
∫

Γ

ω = (2πi)2
∞∑

n,m=0

(−1)m (5m + 2n)!
n!(m!)3(2m + n)!

λnµm. (3.1)

It is holomorphic in a neighborhood of the origin.

3.2 Period differential equation

Proposition 3.1. Every period η1(λ, µ), . . . , η4(λ, µ) satisfies the system of differential equa-
tions: {

L1 = θλ(θλ + 2θµ) − λ(2θλ + 5θµ + 1)(2θλ + 5θµ + 2),
L3 = λ2θ3

µ + µθλ(θλ − 1)(2θλ + 5θµ + 1),
(3.2)

where θλ = λ∂λ, θµ = µ∂µ.

This is a so called GKZ hypergeometric differential equation that is induced from the
starting polytope in a usual way. But it has a 6-dimensional vector space of solutions. It
is too much. Our vecor space generated by periods in a n.b.d. of a fixed point (λ, µ) is
4-dimensional. We can describe the required differential equation as its subsystem:

Theorem 3.2. (Period differential equation)
The system of periods {η1(λ, µ), . . . , η4(λ, µ)} generates the the vector space of the solu-

tions of the differential equation L1 = L2 = 0 with{
L1 = θλ(θλ + 2θµ) − λ(2θλ + 5θµ + 1)(2θλ + 5θµ + 2),
L2 = λ2(4θ2

λ − 2θλθµ + 5θ2
µ) − 8λ3(1 + 3θλ + 5θµ + 2θ2

λ + 5θλθµ) + 25µθλ(θλ − 1).
(3.3)

Consequently the projective monodromy group of Φ coincides with that of the system L1 =
L2 = 0.

3.3 The Hilbert modular group as the monodromy group

Theorem 3.3. (Characterization of the monodromy group)
The projective monodromy group of Φ for the basis {η1(λ, µ), . . . , η4(λ, µ)} is isomorphic

to PO(A,Z)+ = {g ∈ M(4,Z) : tgAg = A, g(D+) = D+}/ ± I4.

Definition 3.1. Let H− be the lower half complex plane. Set k = Q(
√

5), and set Ok =
Z[ 1+

√
5

2 ] be the ring of integers in k. The group PSL(2, Ok) acts on H × H− by(
α β
γ δ

)
: (τ1, τ2) 7→

(ατ1 + β

γτ1 + δ
,
α′τ2 + β′

γ′τ2 + δ′

)
(3.4)

here g =
(

α β
γ δ

)
∈ PSL(2,Ok) and ′ indicates the conjugate in k. In this situation we call

PSL(2, Ok) the Hilbert modular group of k.
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Theorem 3.4. The pair (D+, PO(A,Z)+) is mudular equivalent over Ok with the Hilbert
modular space (H × H−, PSL(2, Ok) ×|〈σ〉), where

σ : (τ1, τ2) 7→
(

1
τ2

,
1
τ1

)
.

Remark 3.1. We can describe the exact correspondence between above two moduli spaces
as the following. Set

W =
(

(−1 +
√

5)/2 (−1 −
√

5)/2
1 1

)
.

It holds

A = U ⊕
(

2 1
1 −2

)
= U ⊕ W (−U)tW.

The correspondence

(τ1, τ2) 7→ (I2 ⊕ tW−1)


τ1τ2

1
τ1

τ2


defines a biholomorphic isomorphism

ι : (H × H−) ∪ (H− × H) → D .

Set ρ(g) = ι ◦ g ◦ ι−1 for g ∈ PSL(2, Ok) ×|〈σ〉. In an explicit form we have

ρ
( (

α β
γ δ

))
= (I2 ⊕ tW )−1


α 0 0 β
0 δ γ 0
0 β α 0
γ 0 0 δ




α′ 0 β′ 0
0 δ′ 0 γ′

γ′ 0 δ′ 0
0 β′ 0 α

 (I2 ⊕ tW ).

and

ρ(σ) = H2 =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 .

The pair (ι, ρ) gives the required isomorphism of the two modular spaces.
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