
ON SERRE’S MODULARITY CONJECTURE
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1. Introduction

Let GQ be the Galois group of Q, p a prime number, and Fp the alge-
braic closure of Fp. We are interested in what we call Serre’s type Galois
representations ρ̄ i.e. continuous irreducible odd representations of GQ with
values in GL2(Fp) : there is a finite extension F of Fp such that ρ̄ factors
through GL2(F ).

The conjecture states in a precise way that ρ̄ arises from a ”usual” (holo-
morphic) modular form ([10]) . For the oddness, let c ∈ GQ be the complex
conjugation (defined up to conjugacy). ρ̄ is odd if det(ρ̄(c)) = −1, i.e. if
the eigenvalues of ρ̄(c) are 1 and −1. It is always the case if p = 2.

What means arise from a modular form ?
Let N be an interger ≥ 1. Let Γ0(N) :(

a b
c d

)
∈ SL2(Z), c ≡ 0 mod N

and Γ1(N) : (
a b
c d

)
∈ SL2(Z), c ≡ 0 mod Na ≡ 1 bmodN.

Let k be an integer ≥ 1. Let Sk(Γ1(N)) be the C vector space of parabolic
forms for Γ1(N) of weight k (among the references : [7], [4]) . An element
f of Sk(Γ1(N)) is an holomorphic function on the Poincaré half plane H
im(z) > 0. It must satisfy the functional equations :

f(
az + b

cz + d
) = (cz + d)kf(z)

for
(
a b
c d

)
∈ Γ1(N). It must satisfy a condition of growth at each

cusp. More precisely, for every γ ∈ SL2(Z), let (f | [γ]k)(z) = (cz +
d)−kf(γ(z)), γ(z) = az+b

cz+d . One asks that (f | [γ]k)(z) have a Fourier ex-

pansion
∑

n≥1 anq
n/h, q1/h = exp(2πiz/h), γ =

(
a b
c d

)
, γ ∈ SL2(Z) (h

divides N and is 1 for the cusp ∞ i.e. if γ ∈ Γ1(N)). When we speak of the
q-expansion without more precision we mean the q-expansion at ∞. The
quotient Γ0(N)/Γ1(N) is isomorphic to (Z/NZ)∗ by γ 7→ d mod N . Then
Sk(Γ1(N)) carrries an action of (Z/NZ)∗. that is noted f 7→ 〈(d)〉 (f). One
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has a the decomposition Sk(Γ1(N)) =
∑

η Sk(Γ0(N), η) into eigenspaces, η
describing the characters of (Z/NZ)∗. It is trivial if η(−1) 6= (−1)k as the
functional equation shows (with γ = −id).

The vector space Sk(Γ1(N)) is finite dimensional. In fact, we have the
projective smooth modular curve X1(N), which for N ≥ 5 classify couples
(E,P ), E generalised elliptic curves, P point of order N , and coherent
sheaves ω such that the elements of Sk(Γ1(N)) are sections in Γ(X1(N), ωk)
that vanish at the cusps. For every n prime to N , let Tn be the Hecke
operator acting on Sk(Γ1(N)) (and Sk(Γ0(N))). The Tn and 〈(d)〉 commute
and generate the Hecke algebra (ring) T1(N). The Tn are semi-simple (they
are normal linear transformation relatively to the Petersson scalar product).
T1(N) is a Z-module of finite type. It is because, if Sk(Γ1(N))Z is the Z-
module of forms whose q-expansion is in Z,

Sk(Γ1(N)) = C⊗ Sk(Γ1(N))Z.

For that a theory of X1(N) over Z is needed (or one can also use the action
of T1(N) on the singular cohomology of X1(N)).

Let d and M be such that dM divides N . Then f(z) 7→ f(dz) defines an
injection of Sk(Γ1(M)) in Sk(Γ1(N)). Let Snew

k (Γ1(N)) be the orthogonal,
for Petersson product, of the sum of the images of Sk(Γ1(M)). Then, by
Atkin-Lehner, Snew

k (Γ1(N)) has a basis fi that are eigenvectors for T1(N),
each one appearing with multiplicity one. In fact, they are eigenforms for
all Hecke operators Tn. If λn is the eigenvalue, one has an(fi) = λna1(fi).
It follows that a1(fi) 6= 0, and one can normalize fi such that a1(fi) = 1.
The fi are the primitive forms. If f is primitive, an(f) = λn generates over
Q a number field Ef , the coefficient field. The an(f) are integers. For n
prime to N this is because T1(N) is finitely generated as Z-module. For p
dividing n, we have formulas for ap (th. 1.27 of [2]).

Let f be a primitive form. Let p be a prime number. Let ιp : Ef ↪→
Qp. Deligne if k ≥ 1, and Deligne-Serre if k = 1, constructed a Galois
representation ρf,ιp : GQ → GL2(Qp). It is unramified at ` if ` is prime to
pN and is characterized by that for all ` prime to pN ,

tr(ρ(Frob`)) = ιp(a`),det(ρ(σ)) = η(σ)χp(σ),

for all σ ∈ GQ, where we identify Gal(Q(µN )/Q) with (Z/NZ)∗. For k ≥
2, the representation is part of the p-adic etale cohomology of an algebraic
variety over Q. If k = 1, the construction of Deligne-Serre use congruences
with Galois representations of weight ≥ 2. When k = 1, the image is finite.

The reduction ρ̄ is well defined up to semisimplification. The Serre’s
type Galois representation ρ̄ is said to arise from a modular if there exists
(k,N) such that ρ̄ is the reduction of ρ, k ≥ 2. It implies that ρ̄ is odd as
η(−1) = (−1)k.

Remark. The reduction may be reducible.
Serre’s conjecture :
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Theorem 1.1. (Khare-W ) Let ρ̄ of Serre’s type. Then there exist (k,N),
k ≥ 2, f a primitive form for Sk(Γ1(N)) and ιp such that ρ̄ is isomorphic
to the reduction of ρf,ιp.

Remarks. 1) If E is a elliptic curve over Q, one knows by Wiles,.... that
E is modular. By Wiles,..., there exists a primitive f ∈ S2(Γ0(N)) such
that , for every p, the Galois representation ρE,p on the Tate module of E
is isomorphic to ρf,p ([14]). It has coefficients in Z. Then, ρ̄E,p giving the
action of GQ on the points of order p of E is of Serre’s type with F = Fp.
Wiles,... theorem implies Serre’s conjecture for ρ̄E,p .

It follows that the L-function of E satisfies a functional equation analogu-
ous to the functional equation of the Riemann ζ function and is the Mellin
transform of f . The converse theorem of Weil implies that an L function
that satisfies a functional equation with a precise suitable form is the Mellin
transform of a modular form f . This makes perhaps natural that modular
forms are linked with Galois representations.

2) There is non condition on ρ̄. For ρ, there are conditions as the construc-
tion of Deligne for k ≥ 2 gives ρ as a factor of the p-adic etale cohomology of
variety X. First, ρ has to be unramified outside a finite set of primes. Fur-
thermore, let Dp ⊂ GQ be the decomposition group for a place above p. The
restriction ρ|Dp of ρ to Dp satisfies the properties of p-adic Galois representa-
tions which satisfies a p-adic comparison theorem. With the terminology of
Fontaine, ρ|Dp is potentially semistable. Fontaine and Mazur call geometric
such representations, ramified outside a finite set of primes and potentially
semistable ([9]). Fontaine and Mazur conjecture is that ρ : GQ → GL2(Qp)
odd irreducible and geometric is isomorphic to ρf,ιp⊗χ

j
p for f of weight ≥ 1,

ιp an embedding of the coefficients of f in Qp, χp : GQ → Z∗p the cyclotomic
character, and j ∈ Z,

3) It is part of the conjectures in the subject that even geometric repre-
sentations in GL2(Qp) should have finite image and be associated to non-
holomorphic Maass forms, eigenvectors for the Laplacian operator with
eigenvalue 1/4. One does not even know how to associate to such forms
a Galois representation (one does not even know the algebraicity of the
coefficients of these Maass forms).

2. The strong form of the conjecture.

In fact, Serre stated a more precise conjecture. Let ρ̄ of Serre type. Serre
defines k(ρ̄) and N(ρ̄) such that in the statement of the theorem we can
further impose that f ∈ Sk(ρ̄)(Γ1(N(ρ̄))).

Theorem 2.1. (Carayol, Edixhoven, Mazur, Ribet, ...) Let ρ̄ be of Serre’s
type. Suppose that ρ̄ arises from a modular form f of weight ≥ 2. Then,
ρ̄ arises from a modular form of weight k(ρ̄) and level N(ρ̄) ; furthermore
k(f) ≥ k(ρ̄) and N(ρ̄) devides N(f).
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Le us define N(ρ̄). It is the part prime to p of the Artin conductor of ρ̄.
Let ` be a prime 6= p and N(ρ̄)` be the ` part of N(ρ̄). One has N(ρ̄)` = 1 if
ρ̄ is unramified at `. Let G be the image of ρ̄(I`) and let G0 ⊃ G1 ⊃ . . . GI . . .
be the ramification filtration of G. The group G0 is the inertia subgroup
and Gi is the subgroup of g ∈ G such that v(σππ − 1) ≥ i, v and π are the
valuation and a uniformizer of the subfield of Q` fixed by ρ(I`) (v(π) = 1) .
Then N(ρ̄)` is ` to the power

∞∑
i=0

dim(V/Vi)
(G0 : Gi)

where Vi = V Gi . This exponents equals the codimension of V I` if and only
if the action of I` is tame.
k(ρ̄) only depends on the restriction of Ip to ρ̄. For p 6= 2, we have

2 ≤ k(ρ̄) ≤ p2 − 1 and there exist j such that k(ρ̄ ⊗ χp
j) is ≤ p + 1. For

p = 2, k(ρ̄) = 2, 4.
A consequence of Serre’s conjecture (in the strong form) is, for fixed p,

the finiteness of the ρ̄ of Serre’s type with fixed conductor N .
We have : Sk(SL2(Z)) = (0) for k < 12 and S12(SL2(Z)) is 1-dimensional

generated by ∆ = qΠn≥1(1 − qn)24. There is no ρ̄ of Serre’s type with
N(ρ̄) = 1 and p ≤ 7, or N(ρ̄) = 1 and k(ρ̄) < 12. For p > 7, 691 is the
only prime such that ρ̄∆,p is reducible ([11]). It follows that there exists no
ρ̄ of Serre’s type with p = 691 and k(ρ̄) = 12. For p ≥ 11, p 6= 691 and
k(ρ̄) = 12, the only Serre’s type ρ̄ is ρ̄ ' ρ∆ (which is induced if p = 23).

Let us define k(ρ̄).
Let ρ̄p be the restriction of ρ̄ to Dp. Let ρ̄p,ss be the semisiplification of

ρ̄p. We have Ip,w ⊂ Ip ⊂ Dp, where Ip,w is the wild inertia subgroup (the
pro p part of Ip). The action of Ip on ρ̄p,ss factors through Ip/Ip,w := Ip,t,
and is given by 2 characters. Kummer’s theory give an isomorphism of Ip,t
with

∏
Z` for ` 6= p. The action of Frobenius is by raising to the power p.

The set of these characters of Ip,t appearing in ρ̄p is stable by the Frobenius.
It follows that either the characters are power of the cyclotomic character
χp (level 1) or {φ, φp} for φ a character killed by raising to the power p2− 1
but not p−1 (level 2). In the first case, ρ̄p is not irreducible (wild inertia fix
at least a line). In the second case ρ̄p is irreducible as Frobenius permutes
the two characters.

Let ρ̄p be irreducible. The action of Ip is by two characters φ and φp

that factorise by F∗p2 and not by F∗p. Let ψ be the fundamental character of

level 2 i.e the Kummer character of the extension Qp2(p1/(p2−1))/Qp2 , where
Qp2 is the quadratic unramified extension of Qp. Then φ = ψ(a+pb). with
0 ≤ a, b ≤ p − 1, a 6= b as φ is of level 2. After possibly changing φ by φp,
we can impose that 0 ≤ a < b ≤ p − 1. Then k(ρ̄) = 1 + pa + b. We can
take j = −a and we get ρ̄′ with a′ = 0, b′ = b − a. Then k(ρ̄′) = 1 + a′

and 2 ≤ k(ρ̄′) ≤ p. We have k(ρ̄) = 2 if and only if a = 0 and b = 1 : then
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ρ̄p comes from a finite flat group scheme (the restriction to Ip comes from a
Lubin-Tate). k(ρ̄) = 1 + p is impossible.

Let ρ̄p be reducible and p 6= 2.
First suppose that the restriction to Ip of ρ̄p is semisimple, sum of the

two characters χpa and χp
b, 0 ≤ a, b ≤ p − 2. After possibly permuting

the 2 characters, we can suppose that a ≤ b. Then k(ρ̄) = 1 + pa + b if
(a, b) 6= (0, 0) and p if (a, b) = (0, 0). If a = 0 we have k(ρ̄) = 1 + b if b 6= 0
and 2 ≤ k(ρ̄) ≤ p− 1. We have 2 ≤ k(ρ̄⊗ χp

j) ≤ p for a j. When k(ρ̄) = 2
, ρ̄p comes from a finite flat group scheme. If a = b = 0 Edixhoven choose
k = 1 ([6]).

Let us suppose that wild inertia does not act trivially. Then the restriction
of ρ̄ to Ip is of the type : (

χp
β ∗

0 χp
α

)
.

We choose 0 ≤ α ≤ p − 2 and 1 ≤ β ≤ p − 1. We define a = inf(α, β) and
b = sup(α, β). If β 6= α+ 1, we define k = 1 + pa+ b. If β = α+ 1, let η be
the star in the upper corner. It is a Dp 1-cocycle with coefficients in Fp(χp),
whose cohomology class, up to non zero scalar, describes the isomorphism
class of ρ̄p. By Kummer’s theory, it comes from γ ∈ K∗ ⊗ Fp where K is
the maximal unramified extension of Qp. The valuation gives a morphism
v : K∗⊗Fp → Fp. We say that we are in the very ramified case if v(γ) does
not vanish. In the not very ramified case we have k = 1 + pa+ b and in the
very ramified case we have k = (a+1)(p+1). In particular , if α = 0, which
we can reach by a twist, we have k = 1 + b in the not very ramified case
(and 2 ≤ k ≤ p) and in the very ramified case we have k = p+1. This is the
case when ρ̄p is given by the points of order p of an elliptic curve which has
semistable bad reduction at p and v(q) is not divisible by p. When k = 2
(α = 0, β = 1 and we are not in the case very ramified) the ρ̄ comes from a
finite flat group scheme.

If p = 2, then k = 2 either if ρ̄p is irreducible or it is reducible and not
very ramified. In the very ramified case, we have k = 4 (Edixhoven k = 3).

Remarks Edixhoven proved for p 6= 2 the weight part of the weak form of
the Serre’s conjecture implies the strong form (in his version which implies
Serre’s version).

We give some hints about these rules.

2.1. ρ̄ comes from a semi-stable elliptic curve over Q. Let ρ̄ comes
from the kernel Ep of multiplication by p in a semistbale elliptic curve E
over Q.

Let us first suppose that E has good reduction at p. Let E its model
over Zp. The multipication by p in the formal group of E is of the form :
[p](X) = pX +

∑
i≥2 aiX

i with
- v(ai) > 0 for i ≤ p− 1 ,v(ap) = 0 (case ordinary) ,
- v(ai) > 0 for i ≤ p2 − 1 , v(ap) = 0 (case supersingular) .
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In the ordinary case we have an exact sequence of finite flat group schemes
over Zp : 0 → C1 → Ep → C2 → 0 with C1 and C2 of order p. Here C1

is the kernel of the multiplication by p on the formal group Ê completion
at the origin of E . By Oort-Tate classification of finite flat group scheme of
rank p, C1 is isomorphic to µp over the rings of interger Zp,ur of the maximal
unramified extension of Zp (the only finite flat group schemes over Zp,ur are
µp and Z/pZ). By Cartier duality, C2 is etale (that implies that the action
of Ip is trivial ; the converse is true for p 6= 2). If R is a local ring, we
have a bijection of isomorphism classes of extensions of Z/pZ by µp in the
category of finite flat commutative group schemes killed by p and elements
of (R)∗/(R∗)p. The bijection associates to an extension G, the µp-torsor
which is is the inverse image of the point 1̄ ∈ Z/pZ(R). (Let α ∈ R∗. Let
R′ an R algebra with Spec(R′) connected. Then G(R′) is isomorphic to the
p-torsion of (R∗/αZ)).

We are in the case not very ramified and k(ρ̄) = 2.
In the supersingular case, let P be a point of order exactly p. The Newton

polygon of [p](X) implies that v(x(P )) = 1/(p2 − 1) (v(p) = 1). It follows
that for all σ ∈ Ip, we have that v(x(σ(P )) − ψ(σ)x(P )) > 1/(p2 − 1) and
we can put on Ep a structure of Fp2-vector space of dimension 1 such that
σ(P ) = ψ(σ)P for all points of order p. That means that Ip acts on Ep by
{ψ,ψp}. We have k(ρ̄) = 2.

Let us suppose that E has bad semistable reduction. Then, it is isomor-
phic to the Tate elliptic curve Gm/q

Z, for q ∈ Q∗
p non unit . Then ρ̄E,p is

not very ramified if and only if v(q) is divisible by p. Otherwise we are in
the case of weight p+ 1. In the not very ramified case, a theorem of Mazur
(level lowering) says that ρ̄E,p arises from a modular form of weight 2 with
p not dividing N (level lowering).

2.2. Low weights. By Scholl ([12]), if f is a primitive form ∈ Sk(Γ1(N)),
k ≥ 2, and ιp an embedding of its coefficient field Ef in Qp, the Galois rep-
resentation ρf,ιp comes from a Grothendieck motive over Q with coefficients.
More precisely, one has a smooth projective variety X over Q with an ac-
tion of an Hecke algebra and a correspondence π on X with π2 = π and π
commutes to the action of the Hecke algebra. The part π∗H∗(X,Q) of the
singular homology cut by the projector π is 2-dimensional over a quotient
of the Hecke algebra which is isomorphic to Ef . The p-adic etale homology
π∗H∗(X,Qp) gives a Galois representation ρf,p, which composed with ιp,
gives ρf,ιp .

The variety X is a desingularization of the symmetric k − 2 product of
the universal generalized elliptic curve over the modular curve with level N
structure (one might have to replace N by a multiple, to get rid of problems
of representability). The variety X has good reduction outside the primes
dividing N . The Galois representation ρf,p is unramified outside the primes
dividing N et p. The trace, relatively to Qp ⊗Ef , of the image of Frob` for
` not dividing Np is a`(f).
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Let us suppose that p does not divide N . One has a p-adic compari-
son theorem πH∗(X,Qp) ⊗ Bcrys = πH∗(X)dR ⊗ Bcrys. (Fontaine-Messing,
Faltings, Tsuji,...) for the ring Bcrys constructed by Fontaine.

We recall some facts about the theory of p-adic Galois representations
([8]).

Let E be the field of fractions of a complete discrete valuation ring with
a perfect residue field kE of characteristic p ; we suppose E of characteristic
0.Then E is a finite totally ramified extension of the field E0 of fractions of
the Witt vectors with coefficients in kE . By Colmez and Fontaine ([1]), there
is an equivalence of categories between the category of admissible filtered
Dieudonné modules over E and a subcategory of GE representations, the
crystalline representations. As X has good reduction, the p-adic comparison
theorem implies that the restriction of ρf to GQp is crystalline (and a fortiori
potentially semistable as mentionned in the introduction).

Let σ be the Frobenius of E0. A filtered Dieudonné module is the data
of a E0-vector space D with a σ-linear endomorphism φ and a decreasing
filtration Filj on DE := E⊗E0 D for j ∈ Z, which is exhaustive (∪Filj = D)
and separated (∩Filj = (0)).

Let us suppose that D is finite dimensional and that φ is bijective. For
D′ ⊂ D stable by φ, we call tN(D′) the valuation of the determinant of
the restriction of φ to D′ (it does not depend on the chosen basis). We let
tH(D′) be

∑
j∈Z jdimE(grj(D′

E)) where the filtration on D′
E is the induced

filtration.
The condition of admissibility is that : D is finite dimensional, φ is bijec-

tive, tH(D′) ≤ tN(D′) for all φ-stable D′, and tH(D) = tN(D).
The comparison theorem allows in principle to describe the Galois rep-

resentation from the filtered Dieudonné module. B = Bcrys is a filtered
Dieudonné module, in fact an algebra in the category of filtered Dieudonné
module (φ and the filtration are compatible with the structure of E0-algebra).
It also carries an action of GE which commutes with the action of φ and
respect the filtration. Then V (D), the GE representation associated by
Colmez and Fontaine to D, is the Qp-vector space of x ∈ B ⊗E0 D which
are fixed by φ and are in Fil0(B ⊗E0 DE). But it is not obvious to extract
concrete informations on V (D) from D.

Exercise. B contains the completion P of the maximal unramified exten-
sion of E0 with its natural action of Frobenius and non zero elements of P
have degree 0 for the filtration. It also contains an inversible element t which
satisfies : φ(t) = pt, τ(t) = χp(τ)t for τ ∈ GE where χp is the cyclotomic
character, and the degree of t for the filtration is 1. Show that the crys-
talline characters GE → Z∗p are exactly the characters whose restriction to
inertia are χjp for an interger j. Show that if D = Qpe, e of degree 0 for the
filtration, φ(e) = λe, then V (D) is unramified and the action of Frobenius
is by λ−1.
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Let ιp be an embedding of Ef into Qp and let K be the closure of its
image. Then the filtered Dieudonné module associated to the restriction of
ρf,ιp has the following shape. (in fact we describe the dual ; we consider the
Galois representation with coefficients in K). D is 2-dimensional over K. φ
is a linear map φ : D → D with characteristic polynomial X2 − ιp(ap)X +
η(p)pk−1 ([12]). The filtration :

(0) = Filk(D) ⊂ Filk−1(D) ⊂ Fil0(D) = D,

is by K-vector spaces, with ∆ := Filk−1(D) of dimension 1. The condition
of admissibility is : if φ(∆) = ∆, the corresponding eigenvalue has valuation
k − 1. φ is the crystalline Frobenius ; the filtration is the Hodge filtration
(one has an natural identification of Filk−1 and Qp ⊗ πSk(Γ1(N))).

Let us call V with the action of GQp the underlying space of ρf,ιp and V̄
its semisimplified reduction.

The one dimensional over K quotients of V by GQp-stable lines corre-
sponds to the subobjects of D, i.e. of lines L which are stable by φ and such
that the corresponding eigenvalue λ is such that v(λ) is equal to the degree
of the filtration induced on L.

One says that we are in the ordinary case if v(ap) = 0. Then V is
not irreducible : it has a quotient of dimension 1 which is unramified. It
corresponds to the eigenspace of φ for the unit root u of X2 − ιp(ap)X +
η(p)pk−1. The action of Frobenius on the quotient is by u−1, on the subspace
the action of Ip is by χk−1

p .
It implies that k(ρ̄) = k if 2 ≤ k ≤ p (we have use that, as we have

supposed that p does not divide N , for k = 2 we are in the case not very
ramified case). For k = p+1, we see that we have k(ρ̄) = p+1 or 2 according
that we are in the very ramified case or not.

Suppose v(ap) 6= 0. Then, V is irreducible. Let us suppose that 2 ≤ k ≤ p.
Then, Fontaine-Laffaille theory establishes a bijection betweenOK lattices of
V stable by GQp and OK-lattices L of D which satisfy φ(Filk−1L) ⊂ pk−1L
where the filtration on L the induced filtration. The filtered Dieudonné
module reduction of L is L = L/πKL, with the induced filtration and the
map φ : L → L and φk−1 : Filk−1(L) → L which is the reduction of p1−kφ.
The ring Bcrys has a subring Acrys which has a quotient which is isomorphic
to O/pO where O is the ring of integers of the algebraic closure of Qp. One
puts a structure of filtered Dieudonné module on L : if β is an element of O
such that βp = p, Fila is βaO/pO. The map φa is defined by φa(βay) = yp.
It is not difficult to prove that if we are not in the ordinary case, there
is a basis e0, e1 of L such that φ(e0) = e1 ∈ Filk−1, φk−1(e1) = αe0, for
α ∈ (kK)∗. The Galois representation V is described as Hom(L,O/pO) in
the category of filtered Dieudonné module. It is straightforward that by the
reduction of solutions x0, x1 of equations xp0 = x1, x

p
1 = pk−1αx0. One sees

easily that the action is tame with characters ψk−1, ψp(k−1). That proves
that k = k(ρ̄) in this case.
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In the non ordinary case and for arbitrary Hodge weights, one needs
Breuil’s theory to describe the tame characters on V̄ .

3. The strategy.

We give the stategy of the proof of Khare of Serre’s conjecture in the case
of level N = 1 (ρ̄ not ramified outside p).

Let p be a prime. We call S(p) the statement : if ρ̄ → GL2(Fp) is
irreducible, odd, unramified outside p, ρ̄ arises from a primitive modular
∈ Sk(SLZ) for a k ≥ 2.

Let p 6= 2. Let k an interger 2 ≤ k ≤ p+ 1, we call S(k, p) the statement
: if ρ̄ → GL2(Fp) is irreducible, odd, unramified outside p, and k(ρ̄) = k,
then ρ̄ arises from a primitive modular ∈ Sk(SL2(Z)).

The statement S(k, p) for all k, 2 ≤ k ≤ p+ 1, implies S(p). This follows
from the fact that if ρ̄ arises from a modular form, then also ρ̄ ⊗ χp. This
follows from the existence of the operator θ on modular forms modulo p
which on q-expansion is q d

dq . For k ≥ 2, an eigenforms are in the image
of the reduction map unless p = 2 (resp. 3) and ρ̄f is induced from a
character of Q(i) (resp. Q(j)) (Carayol). Systems of eigenvalues lift (lemma
of Deligne-Serre).

The strategy is a recurrence on k (or p).
Two preliminary facts.
The restriction det(ρ̄)|Ip of the determinant to the inertia Ip is χpk(ρ̄)−1.

This implies that, as ρ̄ is not ramified outside p, det(ρ̄) = χp
k(ρ̄)−1. As ρ̄ is

odd, k(ρ̄) is even. It suffices to prove S(k, p) for even p.
Let H be a finite subgroup of PGL2(Fp). Then, by Dickson, H is conju-

gate to
- a subgroup of the image of upper triangular matrices,
- PGL2(Fpr) or PSL2(Fpr), for r > 0.
- A4, S4 if p 6= 2, A5 or dihedral group of order 2r with r > 1 not divisible

by p.
If the image of ρ̄ irreducible is solvable, the projective image is up to

conjugacy A4, S4 or dihedral. The representation ρ̄ lift to a representation
with finite image, first projective and then by a theorem of Tate as a linear
representation. By Hecke in the dihedral case and Langlands and Tunnell in
the A4 and S4 case, it arises from a modular form of weight 1. By multiplying
its reduction by Hasse invariant, it arises from a modular form of weight p.

So we can suppose that the image of ρ̄ is not solvable.
The following theorem of Tate (for p = 2) and Serre (for p = 3) imply

S(2) and S(3).

Theorem 3.1. Let ρ̄ be a continuous representation of GQ in GL2(F2) (resp.
GL2(F3)) and which is unramified outside 2 (resp. 3). Then ρ̄ is reducible.

The proof uses the structure of decomposition subgroups and lower bounds
for discriminants.
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Proposition 3.2. S(2, p) is true.

Sketch of the proof. We have to prove that there is no ρ̄ irreductible
odd with k(ρ̄) = 2 and N(ρ̄) = 1. Let ρ̄ be finite flat. Then, we have the
statement (lifting with control of ramification : LCR) :

Theorem 3.3. Let p 6= 2. Let ρ̄ : GQ → GL2(Fp) which is odd and with
nonsolvable image. Let us suppose that 2 ≤ k(ρ̄) ≤ p+ 1. Then ρ̄ lifts to a
GQ → GL2(Qp) which is crystalline of Hodge-Tate weights (0, k(ρ̄)− 1) and
with N(ρ̄) = N(ρ). There is a compatible system (ρι) of GQ representations
such that ρ = ρι for a ι.

A geometric p-adic representation ρ has a conductorN(ρ) : the part prime
to p of the conductor is given by the usual formula, the p-part is given by
Fontaine’s theory. The representation ρ is crystalline if and only if p does
not divide N(ρ). A 2-dimensional geometric GQ representation which is of
Hodge-Tate with weights (0, k − 1) with k ≥ 1 will be called of weight k.

Let k ≥ 1 and N ≥ 1. A compatible system (ρι) of 2-dimensional geomet-
ric representations of GQ of weight k and conductor N is a family of geomet-
ric Galois representations ρι of weight k and conductor N such that there
exist a finite extension E of Q, and for each prime ` and each embedding ι
of E in Q`, ρι is a Galois representation GQ → GL2(Q`). For each ` that
does not divide N , there is an integer a` ∈ E such that tr(ρι(Frob`)) = ι(a`)
for each ι of characteristic 6= `.

In fact in the theorem, the compatibility is fully proved if ` 6= 2.
If one member is reducible, then all are, as then there is a finite abelian

extension K of Q such that a` = 1 + `k−1 for all ` that split in K and is
outside a finite set.

To come back to S(2, p), we have that ρι, for ι an embedding in Q3 is
reducible by a theorem of Fontaine and Abrashkin.

We can also use the following theorem of Skinner and Wiles. Ordinary of
weight k ≥ 2 for a p-adic representation or a modulo p representation of Dp

means that it has a free of rank 1 subrepresentation where the action of Ip
is by χk−1

p and the quotient is unramified. p-adic ordinary representations
are semistable and for k > 2 are crystalline. We say that a GQ p-adic or
mod. p representation is ordinary of its restriction to Dp is. The theorem
of Skinner-Wiles that we use is:

Theorem 3.4. Let p 6= 2. Let ρ : GQ → GL2(Qp) be a continuous irre-
ducible representation which is geometric, odd and ordinary of weight k ≥ 2.
Suppose that ρ̄ is either reducible or irreducible and modular. Suppose that
p− 1 does not divide k− 1. Then ρ arises from a modular form of weight k.

Such a statement will be called Lifting Modularity Theorem (LMT). The
hypothesis p−1 divides k−1 ensures that the restriction of the two characters
of the semisimplification of ρ̄ to Dp are distinct. Skinner and Wiles have in
fact a more general statement under this hypothesis.
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To give an alternative proof of S(2, p), we apply the theorem to ρι the
3-adic representation as above. We also use the following proposition :

Proposition 3.5. Let p 6= 2. Let ρ be a crystalline representation of Dp

which is of weight k with 2 ≤ k ≤ p+1. If ρ̄ is reducible, it is ordinary, and
ρ is also ordinary.

The proposition follows from Fontaine-Laffaille theory for 2 ≤ k ≤ p and
from Berger- Li-Zhu in the case of weight p+1. Berger-Li-Zhu prove that if
k = p+ 1, either ρ is ordinary (and k(ρ̄) = 2 or p+ 1) or it is not ordinary
and the ρ̄|Dp is irreducible and k(ρ̄) = 2..

Proposition 3.6. Let p and q be primes 6= 2 and let k be such that 2 ≤ k ≤
p+ 1 and 2 ≤ k ≤ q + 1. If S(k, p) is true, then also S(k, q).

Let ρ̄ in characteristic q. We lift it and extend to a compatible system
given by theorem 3.3. We consider ρp a p-adic member of the compatible
system. We have k(ρp) = k and N(ρp) = 1. We have the different cases :

- ρ̄p is reducible. Then the restriction to Dp to ρp is ordinary, p− 1 does
not divide k − 1 (k is even !), so the theorem of Skinner-Wiles 3.4 applies.

- ρ̄p is irreducible. Then, by S(k, p) it is modular, as k(ρ̄) = k if k ≤ p−1
and if k = p+1, k(ρ̄) is 2 or p+1 by Berger-Li-Zhu. In fact k(ρ̄) = 2 and ρ̄p
irreducible is impossible by S(2, p) that we already proved. If the restriction
of ρ to Dp is reducible, we can apply theorem 3.4.

Let us suppose that the restriction of ρ̄ to Dp is irreducible. We have
k ≤ p− 1 and we claim that hypothesis 3) of the following LMT theorem is
true.

Theorem 3.7. Let p 6= 2. Let ρ : GQ → GL2(Qp) be a continuous irre-
ducible representation which is geometric, odd and of weight k ≥ 2. Suppose
:

1) ρ̄ is irreducible and modular ;
2) 2 ≤ k ≤ p− 1 and ρ is crystalline ;
3) the restriction of ρ to GQ(µp) is irreducible ;
Then ρ arises from a modular form of weight k.

Proof of the claim : Suppose that the projective image H of ρ̄ is dihedral
of order 2r, r ≥ 1 prime to p. First r is odd as Q do not have 2 distinct
quadratic extensions only ramified at p. The action of Ip is tame and factors
through an element σ of order 2 of H. The normalisator of σ is the group
of order 2 generated by σ. Hence the action of Dp in ρ̄p is reducible.

Let p′ > p. We see that S(p′) implies S(p). To prove Serre’s conjecture,
it suffices to prove it for infinitely many p. We also see that if we know S(p),
we know S(k, p′) for 2 ≤ k ≤ p. As S(3) is true, we know S(4, p) for all
p ≥ 3.

Proposition 3.8. We have S(6, p) for all p ≥ 5.

It suffices to prove S(6, 5). Let ρ̄ of characteristic 5. A version of LCR
gives a semistable lift ρ of weight 2 and conductor 5 : ρ|D5

is an extension of
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an unramified representation of dimension 1 by a dimension 1 representation
on which I5 acts by χ5. The extension reduces to a very ramified extension.
A theorem of Taylor implies that there exist a totally real field F such that
the restriction of ρ to GF comes from a Hilbert modular form for F of
weight 2 unramified outside 5 and is Steinberg at primes above 5. That
implies that the restriction of ρ to GF is a factor of the Tate-module of a
simple abelian variety B over F which has good reduction outside the primes
above 5 and has bad semistable reduction at primes above 5. One has finite
extension N of Q which is of degree the dimension of B and an embedding
N ↪→ EndQ(B). By enlarging N , we can suppose that the factor is of
multiplicity 1. Let B′ be the Weil restriction from F to Q of B. Then ρ is
a factor with multiplicity 1 of the Tate-module of B′ by Frobenius theorem
on induced representation.

By Faltings, ρ is a factor of the Tate module of a simple abelian variety
B′′ over Q. Let L be the center of EndQ(B′′). By Faltings, ρ corresponds to
an idempotent of Qp ⊗ L. Then, B′′ has good reduction outside 5 and has
bad semistable reduction at 5. This follows from compatibility below. But
by Brumer-Kramer (see also Schoof) such an abelian variety does not exist.

For the Galois representations associated to abelian varieties we have the
following compatibility. Let F be a finite extension of Qp and A a simple
abelian variety over F . Let L be the center of EndQ(A).

Let W℘ be the Weil group i.e. the inverse image in the decomposition
group GF of the subgroup generated by the Frobenius. We have an action of
W℘ on the Tate modules V`(A), for ` 6= p. Beware that this action is defined
by restriction in the case A has potential good reduction, but it is not the
case in general. We also have an action on the filtered Dieudonné module
associated to the action of GF on Vp(A) ; the filtered Dieudonné module is
a free L⊗Qp,ur-module. These actions are continuous in the sense that they
are trivial on an open subgroup of inertia.

We have the following compatibility. Let d = 2dim(A)/[L : Q]. For each
ι embedding of L in Q` (` can be p), we get a representation ρι of W℘ in
GLd(Qq) by scalar extension Q` ⊗ L → Q` if ` 6= p and Qp,ur ⊗ L → Qp.
The compatibility is that for each τ ∈ W℘ the characteristic polynomial of
τ acting on ρι have coefficients in L that are independant of ` and p.

This implies that there is a finite extension E of L and a representation
ρW of W℘ in GLd(E) such that for each ι embedding of E in Q`, the repre-
sentation ρι is isomorphic to the representation obtained from ρW by scalar
extension ι : E ↪→ Q`.

The abelian variety has semistable reduction if an only if ρW is trivial
on the inertia group. In fact, one has the Weil-Deligne group whose finite
dimensional representations are the data of a continuous representation of
the Weil group and a nilpotent element N satisfying φNφ−1 = qN if the
residue field of F has q elements and φ is any lifting of the Frobenius. We
have a generalization of the above compatibility to the Weil-Deligne group.
N = 0 if and only if A has potentially good reduction. N = 0 and the
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representation of the Weil group is trivial on inertia if and only if A has
good reduction. The representation of the Weil-Deligne group defined by a
Tate elliptic curve over F is trivial on WW and N is a non trivial nilpotent.

The proof is by induction on p. We know S(p) and we want to prove
S(P ), with p < P . The induction hypothesis is that either P = 7 and p = 5,
or P > 7 is not a Fermat prime and p is the biggest non Fermat prime < P
(P 6= 2∗ + 1, ∗ = 2∗).

First, suppose that ρ̄|DP is irreducible. We can suppose that P < 2p− 1
by the lemma below. We can also suppose that k > p+ 1, as otherwise we
already know Serre’s conjecture, hence k > 2. We have k < P + 1, as the
P + 1 case is ordinary. The couple (a, b), 0 ≤ a < b ≤ P − 1, such that
inertia acts by characters ψa+Pb, ψP (a+Pb), ψ fundamental character of level
2, is such that a = 0, b = k−1 > 1. (Recall that k(ρ̄) = b−a+1+a(P +1)).
We consider twists by χP , χP 2, . . .. Each time we twist we add P + 1 to the
weight till we have made P−b twists, and one of the characters is ψP−b+P

2
=

ψP−b+1. As 1 < P −b+1 < P , we have k(ρ̄⊗χP−BP ) = P −b+2 = P −k+3.
We have P + 3− k < P + 2− p < p+ 1, so ρ̄⊗ χP−BP is modular, hence ρ̄.

Let us see how the general proof works when P = 7. We can suppose
that k = 8. We lift ρ̄ and extend it to a compatible system (ρι) of weight
2 and level 7. We consider a 3-adic member and its reduction ρ̄3. We have
k(ρ̄3) = 2. If ρ̄3 is unramified at 7, ρ̄3 is reducible. and Skinner-Wiles
implies that ρ3 is modular and we are done. Let us suppose that ρ̄3 is
ramified at 7 and irreducible. It cannot be induced. If it has solvable image
it is modular and ρ3 is modular by Skinner-Wiles. So we can suppose that
it has non solvable image. Then we can lift it and extend it to a compatible
system (ρ′ι) of weight 2 and conductor 7 but whose Weil Deligne action at 7
is (ω2

7 ⊕ id, 0) (note that ω2
7 is of ordre 3).Then k(ρ̄′) = 4 or k(ρ̄′ ⊗ χ2

7) = 6
(Savitt). It follows that ρ̄′ is modular or reducible. One check that one can
apply a LMT theorem and conclude that (ρ′ι) is modular.

Lemma 3.9. Let P > 7 a non Fermat prime and let p the biggest non
Fermat prime < P . Then there exist an odd prime ` dividing P − 1, such
that the exact power `r of ` dividing P − 1 satisfy :

P/p ≤ 2m+ 1
m+ 1

− (
m

m+ 1
)(

1
p
),

if lr = 2m+ 1.

For the proof, one proves that for p > 100, 000, P/p ≤ 3/2 − 1/30. We
have Chebyshev type of estimates :

Ax/ log(x) < π(x) < Bx/ log(x),

for x > x0. Let a > C := B/A. Let pn the nth prime. The above inequalities
implies that pn+1 ≤ apn for pn+1 > max(ax0, a

a
a−C ). For x > 100.000, we

have Chebyshev type of inequality for A = 1, B = 1.131. One applies it
for a = 1.2, get pn+1 ≤ 1.2pn for pn+1 > 100.000. There are no pair of
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successive Fermat primes after 3 and 5. One deduces that for P > 100.000,
P/p ≤ (1.2)2 < 1.46̄ = 3/2− 1/30.

Let ρ̄ of characteristic P with 2 ≤ k(ρ̄) ≤ P + 1. We suppose that
k(ρ̄) > p+ 1. We suppose that ρ̄ has non have solvable image. The weight
k(ρ̄) is > 2. We lift it to a compatible system (ρι) of weight 2 and level P .
The representation of the Weil-Deligne group WDP is such that :

- if k(ρ̄) < P + 1, N = 0 and the restriction to IP is ωk(ρ̄)−2
P ⊕ id, where

ωP is the Teichmuller representative of χP (the coefficient field E of the
compatible system has to contains the P − 1 roots of unity) ;

- if k(ρ̄) = P + 1, the restriction to the Weil group is unramified and
N 6= 0.

We consider ρι where ι is of characteristic `, ` as in the lemma : we call
it ρ`. If ρ̄` is reducible or dihedral we are done by Skinner-Wiles (one has to
check that one can apply it). So we may suppose that ρ̄` is ramified at P (as
otherwise it is of weight 2 hence has solvable image). The action of IP on ρ`
is isomorphic to ωk(ρ̄)−2

P ⊕ id if k(ρ̄) < P + 1 and unipotent if k(ρ̄) = P + 1.
The action of IP on ρ̄` is either isomorphic to ωP k(ρ̄)−2⊕id with ωP k(ρ̄)−2 6=

1 or unipotent. Let i be an integer in [m(P − 1)/(2m + 1), (m + 1)(P −
1)/(2m+1)] such that ωiP is congruent modulo the prime above ` defined by
ι to ωk(ρ̄)−2

P . It is not difficult to prove that the reduction of the restriction of
ρ̄` to DP lifts to a representation of DP whose restriction to IP is isomorphic
to ωP i ⊕ id. A theorem LCR implies that as ρ̄` is not reducible or dihedral,
we can lift ρ̄` to a compatible system (ρ′ι′) of weight 2 and level P with
Weil-Deligne action isomorphic to ωP i ⊕ id.

Remark LCR theorem says that we do not have local global obstruction
for the lift. It is motivated by the fact it is true for Galois representations
associated to modular forms. For example, we have the following theorem
of Carayol. Let η and η′ characters of GQ with values in Zp

∗ which have
the same reduction. if ρ̄ irreducible odd arises from S2(Γ0(p), η), then it
arises from S2(Γ0(p), η′) except for some induced particular ρ̄ (p = 3 and ρ̄
induced from Q(j) and p = 2 ρ̄ induced from Q(i)).

Choose a ι′ of characteristic P and let ρ′P be ρ′ι′ . By Savitt, ρ̄′P has weight
i+2 or ρ̄′P⊗χP−i has weight P+1−i. But the inequality of the above lemma
is equivalent to p + 1 ≥ m+1

2m+1(P − 1) + 2 and we have m+1
2m+1(P − 1) + 2 =

(P + 1)− m
2m+1(P − 1). This implies that 2 ≤ i, P + 1− i ≤ p+ 1 and ρ̄′P is

either reducible or modular.
Remarks
The theorem of Savitt is motivated a theorem of Serre which says that if ρ̄

arises from S2(Γ0(p), χpi), it also arises from Si+2(SL2(Z)) or Sp+1−i(SL2(Z))(χp−i).
What happens in case k(ρ̄) = 12. We can suppose P = 11. Then, ρ11(∆)

is congruent to ρ11(X0(11)). This follows that S2(Γ0(11) is generated by
q
∏
n≥1(1 − qn)2

∏
n≥1(1 − q11n)2. We have `r = 5, X0(11) has equation

y2 + y = x3 − x, and (0, 0) is a point of order 5. So we can apply Skinner
Wiles to ρ5.
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4. Lifting Modularity Theorem

We sketch the proof the following theorem which is an extension of a
theorem of Wiles Taylor-Wiles (Diamond, Fujiwara, Taylor, Kisin,...) :

Theorem 4.1. Let p > 2. Let ρ : GQ → GL2(Qp) be an odd Galois repre-
sentation. One supposes that :

- the restriction to GQ(µp) of ”the reduction” ρ̄ is irreducible (hence ρ is
irreducible) ;

- ρ̄ is modular ;
- ρ is unramified outside a finite set of primes ;
- ρ|Dp is crystalline of weight k (Hodge-Tate weights (0, k − 1)) with 2 ≤

k ≤ p+ 1.
Then ρ is modular.

Remark The case k = p + 1 and the restriction of ρ̄ to Dp is irreducible
(hence ρ̄ is of weight 2 is due to Kisin).

We introduce a solvable totally real field F . We prove that ρ|GF is mod-
ular, i.e. arises from a cuspidal automorphic representation of (D ⊗ AF )∗,
D a suitable quaternion algebra of center F . Then, by Jacquet-Langlands
correspondence and Arthur-Clozel solvable base change, we will know that
ρ is modular.

One advantage of considering F is that we can suppose that ρ|GF is un-
ramified outside primes Vp over p and primes in a finite set Σ where at
v ∈ Σ, the Weil-Deligne parameter of ρDv is trivial on Iv and N 6= 0 (the
representation ρ|Iv is tame and its image is unipotent). Furthermore, D is
ramified exactly at infinity and primes in Σ (one imposes that [F : Q] and
the cardinality of Σ are even). One supposes that F is unramified above p.
One supposes that ρ|GF arises from π, that is discrete series of weight k at
infinity, unramified outside Σ and unramified twist of Steinberg at primes
in Σ. These latter conditions might imply to do level and weight lowering
or raising.

One advantage to consider indefinite D is that spaces of modular forms
with action of Hecke operators has combinatorial description. Let (D ⊗F
A∞
F )∗ be the finite adeles. We fix a maximal order OD of D. Let Uv = (OD)∗v

and U =
∏
v Uv. Let E be an extension of Qp which is sufficiently large andO

be its ring of integers. Let W := ⊗F ↪→ESymk−2O with the natural action of
U through its quotient

∏
v∈Vp Uv, where Vp are the primes above p. Let ψ be

the character det(ρ)χ−1
p = χk−2

p where χp is the p-adic cyclotomic character.
We also see ψ as a character of the finite ideles (A∞

F )∗. We define the space
of modular forms Sk,ψ(U) with coefficients in O with central character ψ to
be the space of functions

f : D∗\(D ⊗F A∞
F )∗ →W

such that:
f(gu) = u−1f(g)
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f(gz) = ψ(z)f(g)
for all g ∈ (D ⊗F A∞

F )∗, u ∈ U, z ∈ (A∞
F )∗.

For each finite place v of F we fix a uniformizer πv of Fv. We consider the
left action of g ∈ (D ⊗F A∞

F )∗ by right translation on theW -valued functions
f on (D ⊗ A∞

F )∗ and denote this action by g.f or gf . This induces an action

of the double cosets U
(
πv 0
0 πv

)
U and U

(
πv 0
0 1

)
U on Sk,ψ(U) for

v /∈ S (S is the set of places V∞ ∪ Vp ∪ Σ). We denote these operators by
Sv (which is simply multiplication by ψ(πv)) and Tv respectively. They do
not depend on the choice of πv. We call Tk,ψ(U) the Hecke algebra acting
on Sk,ψ(U) generated over O by the Hecke operators Tv and Sv at primes
v /∈ S.

By Jacquet-Langlands, Sk,ψ(U) with its action of Hecke operators is (es-
sentially) isomorphic of automorphic forms for GL2(F ) which are of weight
k, unramifed outside Σ and for v ∈ Σ it is unramified twist of Steinberg.

The automorphic representaton π defines a morphism Tk,ψ(U) → O. By
reduction it defines a maximal ideal m of Tk,ψ(U). Let Tk,ψ(U)m be the
completion. By Deligne and Carayol, we get a Galois representation : GF →
GL2(Tψ(U)m) that lifts ρ.

Let RψS be the ring representing deformations of ρ|GF that have determi-
nant ψχp and satisfies the following properties for v ∈ S := V∞ ∪ Vp ∪ Σ

: odd, crystalline of weight k and for v ∈ Σ of the form
(
γχp ∗
0 γ

)
with

γ2χp = ψ.
We get a surjective map R

ψ
S → Tψ(U)m. To get our theorem, we prove

that this map is bijective after inverting p.
The existence of RψS as a complete noetherian local noetherian (CNLO)

with residue field the residue field F of O is as follows. Let G = GF,S . One
can first consider the functor of continuous lifts in G → GL2(A), for A in
CNLO. It is representable by a CNLO-algebra. It is almost obvious, but
there is the continuity condition. One can use a representability theorem
of Grothendieck which is a particular case of Schessinger criteria. One has
to use that for any open subgroup G′ of G, there are only finitely many
continuous morphisms from G′ to Z/pZ. The relative tangent space is the
F-vector space of 1-cocyles Z1(G,Ad) where Ad is the adjoint representation
of ρ̄.

A deformation of ρ̄ is an equivalence set of lifts, two lifts being equivalent
if they are conjugate by a matrix of the kernel GL2(A)1 of the morphism
GL2(A) → GL2(F). As ρ̄ is supposed to be irreducible the action of PGL(A)1
has no fixed points and Schlessinger criteria easily implies the representabil-
ity. The relative tangent space is the F-vector space H1(G,Ad).

Fixing the determinant is clearly a closed condition (for tangent spaces, as
p 6= 2, replace Ad by trace 0 matrices Ad0). The condition to be crystalline
is closed. At least when k ≤ p− 1, it is because one can define a crystalline



ON SERRE’S MODULARITY CONJECTURE 17

representation of weight (0, k − 1) with coefficients in a CNLO artinian
algebra and the category is stable by direct sums, subobjects and quotients.
For v ∈ Σ, we impose that the action is tame, the action of inertia is
unipotent and the characteristic polynomial of a lift of Frobenius.

We want to prove that R is not to big and that T is not too small. In
fact we have to do it allowing ramification at a finite set of auxiliary primes
Qn disjoint of S is allowed.

Let Qn be a finite set of primes disjoint of S. We suppose :
- AUX1 ρ̄(Frobv) has distinct eigenvalues αv and βv and N(v) ≡ 1mod pn.
For v ∈ Qn let ∆v the maximal p-quotient of k∗v so by classfield theory it

identifies to the maximal p-quotient of tame inertia at v. It is not difficult to
see that the restriction to Iv of the universal representation in GL2(R̄

ψ
S∪Qn)

factors through ∆v : the action of Dv is γαv⊕γβv with γαv having unramified
reduction with the image of Frobenius αv, idem for γβv and the restriction
γαv and γβv to Iv are inverse. Let ∆n :=

∏
v∈Qn ∆v. We have an action

of ∆v, hence of ∆n on R̄ψS∪Qn (by multiplication by γαv(σ) where σ is a

generator of tame inertia at v). The quotient of R̄ψS∪Qn by the augmentation

ideal is RψS .
We have a compatible action of Hecke-algebras. The space Sk,ψ(UQn)

is defined in the same way as Sk,ψ(U) but for v ∈ Qn, one replaces Uv =
(OD)∗v ' GL2(O) by :

(UQn)v = {g ∈ GL2(OFv) : g =
(
a b
0 d

)
mod.(πv), ad−1 → 1 ∈ ∆v},

The natural action of g ∈ ∆v, denoted by 〈g〉, arises from the double coset

UQn

(
g̃ 0
0 1

)
UQ

where g̃ is a lift of g to (OF )∗v. One also needs Γ0 level.

(U0
Q)

v
= {g ∈ GL2(OFv) : g =

(
∗ ∗
0 ∗

)
mod.(πv)}.

We have corresponding Hecke-algebras and maximal ideals m
We have the following proposition (at least for p > 3), otherwise more

technical) :

Proposition 4.2. Sk,ψ(UQn)m is a free O[∆n]-module of rank equal to the
rank of Sk,ψ(U0

Qn
)m as an O-module. Sk,ψ(U0

Qn
)m is isomorphic to Sk,ψ(U)m.

For the proof one uses the combinatorial description of spaces of modular
forms. For U one of the open subgroups defined above, if (D⊗F A∞

F )∗ is the
disjoint union of i∈ID∗tiU(A∞

F )∗ for a finite set I and with ti ∈ (D⊗A∞
F )∗,

then Sk,ψ(U) can be identified with

(1) ⊕i∈IW (U(A∞F )∗∩t−1
i D∗ti)/F ∗
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via f → (f(ti))i.
If p > 3, the groups appearing as exponent are of order prime to p

(isotropy groups : one uses F unramified at p). The first part of the propo-
sition follows. At least it follows that, for η a character of ∆n, the rank
of the part of Sk,ψ(UQn)m on which the ∆n acts with character η does not
depend on η. This is because by replacing O by its residue field F one gets
a space of modular form with coefficients in F which does not depend on η
and which is the reduction of the spaces of modular forms with coefficients
in O for the various η. This essentially gives a theorem of Carayol.

The fact that Sk,ψ(U0
Qn

) ' Sk,ψ(U) relies that there is no new at p modu-
lar forms for Γ0(p) that reduces to ρ̄ as the eigenvalues of Frobv are distinct
and N(v) ≡ 1mod p and an Ihara lemma to get an isomorphism over O.

As the action of Dv in ρ̄ is not irreducible, we consider for v ∈ S, the
ring R̄�,ψ

v that represents lifts of ρ̄|Dv with the current condition. We define
R̄�,ψ
S∪Qn the ring that represents deformations of ρ̄ of determinant ψχp that

locally at v ∈ S satisfy the current conditions, are unramified outside Qn
and for v ∈ S a choice of the basis Bv of the underlying space. Two such
datas are isomorphic if (ρ|Dv , Bv) define isomorphic lifts. We write R̄�,loc,ψ

S

the completed tensor product ⊗v∈SR̄�,ψ
v .

The ring R̄�,ψ
S∪Qn is naturally an R̄�,loc,ψ

S -algebra. It is almost clear that

R̄�,ψ
S∪Qn is a power series algebra over R̄ψS∪Qn with 4s − 1 variables (s is the

cardinality of S).
We let Rn := R̄�,ψ

S∪Qn and Mn := Rn ⊗R̄ψS∪Qn
Sk,ψ(UQn)m. We have struc-

ture ofO[[y1, . . . , yqn+4s−1]]-algebra onRn and an action ofO[[y1, . . . , yqn+4s−1]]
on Mn that are compatible. The coinvariants by (y1, . . . , yqn+4s−1) are R
and M respectively. The module Mn is finite free over the image of Rn in
EndO(Mn).

We now have to bound the number of generators of Rn as a R̄�,loc,ψ
S -

module.
We write h∗ for the dimension over F of H∗. For v ∈ S ∪Qn, we choose

Lv ⊂ H1(Dv, ad0) and H1
{Lv}(S ∪ Qn, ad0) are the elements of H1(S ∪

Qn, ad0) that at v ∈ S ∪ Qn localizes to an element of Lv. We choose
Lv = 0 for v ∈ S and Lv = H1(Dv, ad0) for v ∈ Qn.

Lemma 4.3. The minimal number of generators of R̄�,ψ
S∪Qn as a R̄�,loc,ψ

S -
algebra is h1

{Lv}(S ∪Qn, ad0) +
∑

v∈S h
0(Dv, ad)− 1.

We have Wiles formula (we will use it with V = Qn)

(2)
|H1

{Lv}(S ∪ V,Ad0)|

|H1
{L⊥v }

(S ∪ V, (Ad0)∗(1))|
=

|H0(GF ,Ad0)|
|H0(GF , (Ad0)∗(1))|

∏
v∈S∪V

|Lv|
|H0(Dv,Ad0)|
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We will be able to impose to Qn the properties :
AUX2 : qn = h1

{L⊥v }
(S, (ad0)∗(1)) and H1

{L⊥v }
(S ∪Qn, ad0)∗(1)) = 0.

We write qn = q.
In the Wiles formula, the terms h0(GF ) are trivial, the contribution of

v ∈ S is −h0(Dv, ad0) and the term for v ∈ Qn is 1. Finally, we have proved
that

Lemma 4.4. The minimal number of generators of R̄�,ψ
S∪Qn as a R̄�,loc,ψ

S -
algebra is q + s− 1.

For the rings R̄�,ψ
v and R̄�,loc,ψ

S , we have :

• R̄�,ψ
v is flat over O,

• The relative to O dimension of each component of R̄�,ψ
v is :

- 3 if ` 6= p ;
- 3 + [Fv : Qp] if ` = p ;
- 2 if v is an infinite place.

• R̄�,ψ
v [1p ] is regular.

It follows that the completed tensor product R̄�,loc,ψ
S is flat over O, with

each component of relative dimension 3|S|, and R̄�,loc,ψ
S [1p ] is regular.

References

[1] P. Colmez et J.-M. Fontaine Construction des représentations p-adiques semi-stables
Inven. Math. 140 (2000)

[2] H. Darmon, F. Diamond, R. Taylor. Fermat’s last theorem.
[3] F. Diamond and J. Shurman. A first course in Modular Forms.
[4] F. Diamond and J. Im Modular forms and modular curves Seminar on Fermat’s last

theorem.
[5] B. Edixhoven Serre’s conjecture Modular forms and Fermat’s last theorem
[6] B. Edixhoven The weight in Serre’s conjecture on modular forms Inventiones 109,

1992.
[7] Miyake Modular forms.
[8] J.-M. Fontaine and Y. Ouyang Theory of p-adic Galois Representations
[9] J.-M. Fontaine and B. Mazur. Geometric Galois representations. In Elliptic curves,

modular forms, & Fermat’s last theorem (Hong Kong, 1993), Ser. Number Theory,
I, pages 41–78. Internat. Press, Cambridge, MA, 1995.

[10] J.-P. Serre. Sur les représentations modulaires de Gal(Q/Q). Duke 54 1987
[11] H.P.F. Swinnerton-Dyer. . On `-adic representations and congruences for modular

forms. Lecture Notes in Math. 350.
[12] T. Scholl. Motives for modular forms Inventiones 100.
[13] R. Taylor and A. Wiles. Ring-theoretic properties of certain Hecke algebras. Ann. of

Math. (2), 141(3), 553–572, 1995.
[14] A. Wiles. Modular elliptic curves and Fermat’s last theorem. Ann. of Math. (2),

141(3), 443–551, 1995.

E-mail address: wintenb@math.u-strasbg.fr
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Universitaire de France, 7, rue René Descartes, 67084, Strasbourg Cedex,
France


