
1. Dimenson data

Definition 1. We call the dimension data for H ⊂ G the data associating

dimV H

to every finite dimensional complex representaion V of G.

H1, H2 ⊂ G are said to possess the same dimension data if

dimV H1 = dimV H2

for any finite dimensional representation V of G.

For a faithful representation (ρ, V ) of a Lie group G, we have the data of the invariant
dimensions of various tensors of V , which is identical to the dimension data of the inclusion
G ⊂ GL(V ).

The dimension data problem asks, “what we can say for two groups H1, H2 if they have
inclusions to a group G with the same dimension data ?”

The native hope is to show H1 ∼ H2 (or (G1, ρ1, V1) ∼= (G2, ρ2, V2)) provided that
H1, H2 ⊂ G (or (G1, ρ1, V1), (G2, ρ2, V2)) have the same dimension data. But the conju-
gacy relation doesn’t hold in some examples. So one should try to show a weaker relation
or to consider the dimension data problem under some additional conditions.

2. Dade ’s example

In [D], Dade answered a question of R. Brauer negatively by giving two 3-generator,
3-step nilpotent, exponent p, order p7 non-isomorphic finite groups G,G∗ with identical
character table and satisfying all other additional conditions proposed by Brauer.

In Dade ’s example, let H1 = G, H2 = G∗, take an i such that χi(1) = p3, let ρ1, ρ2 be
representations with characters χi, χ

∗
i respectivly. Then (H1, ρ1), (H2, ρ2) have the same

dimension data.

3. Larsen-Pink ’s main results

In [LP], Professors M. Larsen and R. Pink worked on dimension data problem for
faithful complex representations of complex semisimple linear groups.

Theorem 1([LP]) For any faithful finite dimensional representation of a connected
semisimple Lie group G, dimension data uniquely determines G up to isomorphism.

Theorem 2([LP]) Under the hypotheses of Theorem 3, if ρ is irreducible, dimension
data uniquely determines ρ up to isomorphism.

Theorem 3([LP]) In the full generality of Theorem 3, ρ is not determined up to iso-
morphism by dimension data.

Example 2. In pages 392-393 of [LP], starting from a pair of isomorphic but non-
conjugate sub-root systems Φ1,Φ2 ⊂ Ψ = r(BCn), they produced a semisimple compact
connected Lie group G and two non-isomorphic representations (ρ, ρ′) with the same di-
mension data.

It is remarked in [LP] that the smallest rank of G constructed in this way is 78 and the
smallest dimension is rather large.
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4. Motivation and connections

It is said in [LP] that their work on dimension data was motivated from a “Tannakian”
type question: to what extent is a complex linear Lie group, G, and a finite dimen-
sional representation, (ρ, V ) of G, determined by the dimensions of the various invariant
spaces WG, where W is obtained from V by linear algebra(tensor, symmetry tensor,
anti-symmetric tensor, etc).

I learned the dimension data problem from Professors Jinpeng An and Jiukang Yu.
They are interested on “whether the dimension data determine semisimplicity ?” (that
is, if H1, H2 ⊂ G have the same dimension data and one of H1, H2 is semisimple, is another
one of H1, H2 also semisimple ?)

The general branching rule problem asks, “how each irreducible finite dimensional rep-
resentation of a group G decompose when it is viewed as a representation of a subgroup
H by restriction ?”

In branching rule problem for H ⊂ G, when we look at the multiplicities of the trivial
representation of H appearing in representations of G, we just get dimension data. So
dimension data is part of information contained in branching rule.

The dimension data also arises in other aspects of mathematics.

- In [LP2], it arised in Larsen-Pink ’s study of compatible systems of l-adic Galois
representations.

- In [S], C. Sutton used the counter-examples in [LP] to produce examples of isospec-
tral non-isomorphic simply connected Riemannian manifolds.

- In [L], R. Langlands proposed a connection between dimension data and the orders
of the pole of L-functions at s = 1. For this, we recommend you to have a look at
Langlands’ paper [L] or [L2] for his idea.

5. Counter examples of An-Yu-Yu

In [AYY], we get a class of non-isomorphic representations with the same dimension
data.

Theorem 3. For each n ≥ 1, let G = SU(4n+ 2),

H1 = {diag{A, Ā} ∈ SU(4n+ 2)|A ∈ U(2n+ 1)}

and

H2 = {diag{A,B} ∈ SU(4n+ 2)|A ∈ Sp(n), B ∈ SO(2n+ 2)}.
Then H1, H2 ⊂ G possess the same dimension data but H1 6∼= H2.

One can see that, in the above example, for any n ≥ 1, H2
∼= Sp(n) × SO(2n + 2) is

semisimple but H1
∼= U(2n+1) is not, so dimension data doesn’t determine semisimplicity.

Use a way of construction of isospectral manifolds in [S], our examples lead to examples
of pairs of isospectral simply connected but non-homeomorphic manifolds.

Corollary 4. For each n ≥ 1, the Riemannian manifolds Xn = SU(4n + 2)/U(2n + 1)
and Yn = SU(4n + 2)/(Sp(n) × SO(2n + 2)) with metrics induced from a bi-invariant
metric on SU(4n+ 2) are simply connected and isospectral but non-homeomorphic.

Note that,

H2(Xn,Z) = Z, H2(Yn,Z) = Z/2Z,
so Xn, Yn have different homology.
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6. Conventions

A root system is a finite set Φ consisting of non-zero vectors in an Euclidean linear
space V , which is stable under the action of the reflection sα for any α ∈ Φ. Recall that

sα(v) = v − 2〈v, α〉
〈α, α〉

α,∀v ∈ V,

and the group WΦ generated by the reflections sα : α ∈ Φ is called the Weyl group of Φ.
Φ is called reduced if for any α ∈ Φ, 1

2α 6∈ Φ. A subset Φ′ of Φ is called a sub-root system
if Φ′ is itself a root system.

Each root system is the direct sum of simple root systems, and simple root systems can
be classified into types {An, Bn, Cn, Dn : n ≥ 1}(with some repetition in lower rank) and
{E6, E7, E8, F4, G2}.

Choose an ordering on V , the positive vectors in Φ consist in the positive system Φ+,
let

δΦ =
1

2

∑
α∈Φ+

α, AΦ =
1

|WΦ|
∑
w∈WΦ

[δΦ − wδΦ].

For any finite group Γ between WΦ and O(V ), define

FΦ,Γ =
1

|Γ|
∑
γ∈Γ

γ(AΦ) =
1

|Γ|
∑
γ∈Γ

[δΦ − γδΦ].

7. The classification of counter-examples

We showed the dimension data problem can be reduced the comparison of characters
associated to two sub-root systems in a root system. For the latter, we have the following
answer.

Theorem 5. For a simple root system Ψ0, if there exists non conjugate sub-root systems
Φ1,Φ2 ⊂ Ψ0 such that FΦ1,WΨ0

= FΦ2,WΨ0
. Then Ψ0 = Cn, BCn, F4.

When Ψ0 = Cn, BCn, FΦ1,WΨ0
= FΦ2,WΨ0

if and only if

∀m ≤ n, bm(Φ1)− bm(Φ2) = a2m(Φ1)− a2m(Φ2) = 0,

and ∀m ≤ n, a2m+1(Φ1)− a2m+1(Φ2) = cm(Φ2)− cm(Φ1) = dm(Φ2)− dm(Φ1).

When Ψ0 = F4, FΦ1,WΨ0
= FΦ2,WΨ0

if and only if Φ1 ∼ Φ2,

or {Φ1,Φ2} ∼ {AS2 , AL1 + 2AS1 }, {AL1 +AS2 , 2A
L
1 + 2AS1 }.

Theorem 6. Let Ψ =
⊕

1≤i≤m Ψi be the direct sum of simple root systems {Ψi}m1 and

Φ1,Φ2 ⊂ Ψ. Then FΦ1,Aut(Ψ) = FΦ2,Aut(Ψ) if and only if there exists γ ∈ Aut(Ψ) such that

F
Φ

(1)
i ,WΨi

= F
Φ

(2)
i ,WΨi

,∀i, 1 ≤ i ≤ m,

where γΦ1 =
⊕

1≤i≤m Φ
(1)
i and Φ2 =

⊕
1≤i≤m Φ

(2)
i .

8. Method of the proof

Part 1: Reduction.

Let dµH be a Haar measure on H normalized so that
∫
H 1dµH = 1, pG : G −→ G# be

the map of projection to conjugacy class, (pG)∗i∗(dµH) is called the Sato-Tate measure.

Choose maximal tori T, S of H,G respectively with T ⊂ S and let

Λ = Hom(T,U(1)),Γ0 = NG(T )/CG(T ),Γ = Aut(T ) = Aut(Λ).
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From the calculation of Sato-Tate measure , Larsen-Pink was able to show the dimen-
sion data determines conjugacy class of T and the character FΦ,Γ◦, and vice-versa.(this
statement is slightly different with that in [LP])

Consider all sub-root systems Φ ⊂ Λ with FΦ,Γ = F , Larsen-Pink was abel to show the
existence of a unique maximal sub-root system Ψ ⊂ Λ containing all such Φ. Moreover Ψ
is Γ stable and Γ = Aut(Ψ,Λ).

Then we are led to the following the question, which can be reduced the case to Ψ is
either reduced or isomorphic to a BCn.

Question 7. Fix a root system Ψ, a lattice Λ with ZΨ ⊂ Λ ⊂ ΛΨ, Γ = Aut(Ψ,Λ), classify
pairs of non-conjugate sub-root systems Φ1,Φ2 ⊂ Ψ with FΨ1,Γ = FΦ2,Γ.

Part 2: Semisimple case.

When Ψ is reduced, Larsen-Pink showed the characters FΦ,Γ are actually linearly inde-
pendent for any system of pairwise non-conjugate sub-root systems.

When Ψ = BCn, Larsen-Pink showed the following.

Proposition 8. the character rings of {BCn : n ≥ 1} form a direct system and the direct
limit is isomorphic to Q[x1, x2, ..., xn, ...].

Let bk, ck, dk be the polynomials from sub-root systems Bk, Ck, Dk respectively.

Proposition 9. (1) cn, dn+1 ∈ Q[x1, x2, ..., x2n]−Q[x1, x2, ..., x2n−1],
bn ∈ Q[x1, x2, ..., x2n−1]−Q[x1, x2, ..., x2n−2], they are of constant term 1 and have
integer coefficients.

(2) Each of {bn, cn, dn+1|n ≥ 1} is a prime in Q[x1, x2, ...] and any two of them are
different.

(3) Each of the subset {b1, ..., bn, c1, ..., cn}, {b1, ..., bn, d2, ..., dn+1},
{c1, ..., cn, d2, ..., dn+1} is algebraicly independent.

Part 3: Reductive case.

By Theorem 3, the fundament Theorem 1 in [LP] fails in reductive case, so the best
hope is to answer the following question affirmatively.

Question 10. If two sub-root systems have equal Γ-traces of characters, whether the
characters of sub-root systems become equal after replace one of them by a Γ conjugate
sub-root system?

The answers to this question is given in Theorem 5 and 6.

When Ψ = An−1, the linear independence still holds, so one just shows as that in [LP].

When Ψ is of type B,C,D or non-reduced, apart from bk, ck, dk, we define a polynomial
ak from the sub-root system Ak−1. Besides those conclusions already showed in [LP], the
main technical step is to show a2n = bnσ(bn) and a2n+1 = cndn+1.

Actually the polynomials turn out to be the determinants of some matrices. This fact
is crucial to show a2n = bnσ(bn) and a2n+1 = cndn+1.

When Ψ is exceptional, we showed for any dominant integeral weight λ, the different
characters with λ as a leading term are linearly independent.

These are enough to prove Theorems 5 and 6.
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