Abstract: Let k be a number field and \bar{k} an algebraic closure of k. Write $\mathbb{P}^{n}(k ; d)$ for the set of points $P=\left(x_{0}: \ldots: x_{n}\right)$ in $\mathbb{P}^{n}(\bar{k})$ which have degree d over k. The distribution of points in $\mathbb{P}^{n}(k ; d)$ is best described in terms of their height H. Let X be a real number; a well-known result of Northcott implies that the subset of $\mathbb{P}^{n}(k ; d)$ defined by $H(P)<X$ is finite. The central problem consists in finding an asymptotic estimate for the cardinality of this set as X tends to infinity. A classical Theorem of Schanuel from 1979 gives the asymptotics for $d=1$. Schmidt (1995), Gao (1996) and more recently Masser, Vaaler (2007) found asymptotic estimates for $d>1$. Masser and Vaaler's result then covers all cases with $n=1$; but if k is not the field of rational numbers and n, d are both greater than one not a single example for the asymptotics was known up to now. We present a result which covers the cases $n>5 d / 2+4$ for arbitrary number fields k.

