

SALZBURG MATHEMATICS COLLOQUIUM

Martin Widmer (London)

"From number theory to model theory via geometry" November 24, 2016

Abstract:

Which subsets of \mathbb{R}^n have the property that their *m*-volumes of the orthogonal projections to any *m*dimensional subspace can be bounded solely in terms of the *m*-volumes of the projections to the *m*dimensional coordinate spaces? Or which subsets of \mathbb{R}^n have a boundary that can be parameterised by a fixed number of maps $\phi_i : [0, 1]^{n-1} \to \mathbb{R}^n$, each satisfying a Lipschitz condition with Lipschitz constant a fixed multiple of the diameter of the set? These geometric problems are motivated by concrete number theoretic problems (on the distribution of lattice points in subsets of \mathbb{R}^n). It turns out that o-minimality, a notion from model theory, is a great tool to describe large classes of sets in \mathbb{R}^n with these required properties. The aim of this talk is to give a short gentle introduction to o-minimality, and then to show the power of this concept by means of concrete examples. (Parts of the talk are joint work with Fabrizio Barroero.)

Thursday, 15:00-15:45 Hörsaal 414, 1. Stock

Fachbereich Mathematik Universität Salzburg Hellbrunner Straße 34 5020 Salzburg AUSTRIA www.uni-salzburg.at/mathematik