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Abstract. We consider a rational function f which is ‘lacunary’ in the sense that it can be
expressed as the ratio of two polynomials (not necessarily coprime) having each at most a given
number ℓ of terms. Then we look at the possible decompositions f(x) = g(h(x)), where g, h are
rational functions of degree larger than 1. We prove that, apart from certain exceptional cases
which we completely describe, the degree of g is bounded only in terms of ℓ (and we provide
explicit bounds). This supports and quantifies the intuitive expectation that rational operations
of large degree tend to destroy lacunarity.

As an application in the context of algebraic dynamics, we show that the minimum number
of terms necessary to express an iterate h◦n of a rational function h, tends to infinity with
n, provided h(x) is not of an explicitly described special shape. The conclusions extend some
previous results for the case when f is a Laurent-polynomial; the proofs present several features
which did not appear at all in the special cases treated so far.

1. Introduction and results

In this paper we are concerned with ‘lacunary’ rational functions; by this we mean expressions
f(x) = P (x)/Q(x), where P,Q are polynomials (not necessarily coprime) having altogether at
most a given number ℓ of terms. We think of the number of terms as being bounded whereas we
allow the degrees of the terms and their coefficients to be arbitrary.

More specifically, the paper studies the decomposability of such a lacunary function, namely
the equation f(x) = g(h(x)), where g, h are rational functions of degree > 1.

We remark that lacunary polynomials (or rational functions) appear in many mathematical
investigations: the binomials have an ancient history; reducibility of trinomials and ℓ-nomials was
studied by Selmer, ..., Schinzel (see e.g. [13], Chs. 5, 6). Lacunary polynomials are meaningful
also because they appear as expressing restrictions of any prescribed regular function on G

n
m to

varying 1-dimensional algebraic subgroups.
Generally speaking, lacunary polynomials also appear in computational issues since we may

‘write down’ a formula for a polynomial with given number of terms, thinking of the degrees and
coefficients as indeterminates. (For instance lacunary polynomials appear as one-way functions
in cryptography.) We may further quote work in real geometry (see e.g. the survey [9]) showing
that sometimes it is possible to have control on objects defined by equations with boundedly
many terms, even if they have large degree.

And also ‘decomposability’ of a rational function f is relevant in arithmetical and algebraic
questions; it is for instance deeply related to the Galois group of the rational cover f : P1 → P1,
and has impact in Diophantine equations with separated variables (see e.g. [1, 3]).

The paper [18] studied the decomposability of lacunary polynomials; note that since the
degree of a polynomial with a fixed number of terms may be arbitrarily large, it does not appear
an obvious issue to check whether it is decomposable. It has been proved therein that if f
is a ‘lacunary’ polynomial, say with at most ℓ non-constant terms, and if f(x) = g(h(x)) for
polynomials g, h of degree larger than 1, then either h(x) has the special shape axn+b or deg g is
bounded in terms only of ℓ. In other words, roughly speaking, if g has ‘large’ degree then g(h(x))
has ‘many’ terms (or else h is very special). So this kind of result supports and quantifies the
intuitive expectation that polynomial operations of large degree tend to destroy lacunarity.

Moreover, this bound led in [19] to a proof of a conjecture of Schinzel, and even to describe
‘algorithmically’ all the possible decompositions of a polynomial with a given number of terms.
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In [20] a similar bound was extended to Laurent-polynomials (with a new unavoidable ex-
ceptional shape) also with the purpose of application to certain questions studied by Watt and
Zieve on symbolic polynomials [16]. Actually, these last authors would also require, for further
applications, some extension of such bounds to general rational functions, and on the other hand
this could also admit applications to a generalisation of the results of [19].

It is the purpose of this paper to carry out this program. We remark at once that this extension
does not appear to follow by a mere straightforward modification of the methods of [18, 20],
as several new crucial obstacles appear. (For the treatment of one case we have even found it
necessary to rely on a paper using the classification of finite simple groups.)

As a simple immediate application in the context of one-variable dynamics, we shall also
prove a corollary bounding below the number of terms of an n-times iterate h◦n of a rational
function h. (This was done in [18] for Laurent-polynomials.)

Notation.

• We let k be a field of characteristic zero. For the present purposes it causes no loss of
generality to suppose, as we shall do, that k is algebraically closed. As usual we set
k∗ = k\{0}.

• The degree of f ∈ k(x) is defined by deg f = [k(x) : k(f(x))]. In case f(x) = p(x)/q(x),
with p, q ∈ k[x] coprime, deg f is just the maximum of the degrees of p and q respectively.
(We shall also use degrees in function fields other than k(x); see Section 2.)

• We denote by PGL2(k) = Aut(P1(k)) the group of linear fractional transformations, i.e.
rational functions of the form (ax + b)/(cx + d) with a, b, c, d ∈ k, ad − bc 6= 0, and by
∞ = (0 : 1) the unique point at infinity of P1(k).

• We say that a rational function f ∈ k(x) is decomposable if there is a non-trivial de-
composition of f as a rational function in k(x), i.e. an equation f(x) = g(h(x)) with
g, h ∈ k(x), deg g, deg h > 1. Observe that we can modify such decompositions by replac-
ing g, h resp. by g◦λ−1, λ◦h with any λ ∈ PGL2(k). We remark that if f is a polynomial
or a Laurent-polynomial, then we can easily normalize correspondingly g, h; see Remark
1.1 below.

Accordingly, we say that f is indecomposable if the equality f(x) = g(h(x)), g, h ∈
k(x), implies deg g = 1 or deg h = 1.

• We denote by Tn the Chebyshev polynomial of degree n; it is uniquely determined by
the equation Tn(x+ x−1) = xn + x−n.

We are now ready to formulate the main result.

Main Theorem. Let ℓ be a positive integer and let f ∈ k(x) be expressible as f(x) =
P (x)/Q(x), where P,Q ∈ k[x] have altogether at most ℓ terms. Suppose that f(x) = g(h(x)),
where g, h ∈ k(x) and where h(x) is not of the shape λ(axn + bx−n) for any a, b ∈ k, n ∈ N and
λ ∈ PGL2(k). Then

deg g ≤ 2016 · 5ℓ.

Note that in this statement we are not assuming that P,Q are coprime (which would lead to
an easier discussion). We shall refer to the shape λ(axn + bx−n) as the forbidden shape (for the
Main Theorem).

Here is the simple application to iterates alluded to above, where we denote by h◦n the nth
iterate h(h(. . . h(x)) . . .):

Corollary. Let q ∈ k(x) be non-constant and let h ∈ k(x) be of degree d ≥ 3. Suppose that
h(x) is not conjugate (with respect to the group action given by PGL2(k) on k(x)) to ±xd or
to ±Td(x). Then, for any integer n ≥ 3, we cannot express h◦n(q(x)) as a ratio of polynomials
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having altogether less than 1
log 5((n− 2) log d− log 2016) terms.

Note that in the cases h(x) = xd and h(x) = Td(x) we cannot obtain any bound tending
to infinity with d, in view of the equations h◦n(x) = xd

n

in the first case and h◦n(x + x−1) =
xd

n

+ x−dn in the second case. We have restricted to deg h ≥ 3 for simplicity. If deg h = 2 we
may obtain a similar statement with a slightly more boring proof, or by applying this one with
h(h(x)) in place of h(x). Inspection shows that the proof yields further precision on the shape
of q(x) if the conclusion does not hold.

The Main Theorem takes into account the most general case, but it subdivides into a number
of subcases according to the shape of f and h, where the bound takes different forms and the
proofs can be more or less involved. Therefore we add to this statement the corresponding
statements for the subcases; in turn, the Main Theorem follows easily from these statements.

Theorem 1 (Polynomial case). Let ℓ be a positive integer and let f ∈ k[x] be a polynomial with
ℓ non-constant terms. Suppose that f(x) = g(h(x)), where g, h ∈ k[x] and where h(x) is not of
the shape axn + b for a, b ∈ k, n ∈ N. Then

deg f + ℓ− 1 ≤ 2ℓ(ℓ− 1) deg h

and

deg g ≤ 2ℓ(ℓ− 1).

This is [18, Theorem 1]. We remark (as is pointed out in [18]) that the exclusion of polynomials
h of the shape axn + b is really necessary as is shown by simple examples like g(x) = g∗(x− b),
where g∗ ∈ k[x] has ℓ non-constant terms.

Theorem 2 (Laurent case). Let ℓ be a positive integer and let f ∈ k[x, x−1]\k[x] be a Laurent-
polynomial with ℓ non-constant terms. Suppose that f(x) = g(h(x)), where g ∈ k[x], h ∈ k[x, x−1]
and where h(x) is not of the shape axn + b+ cx−n for a, b, c ∈ k, n ∈ N. Then

deg f ≤ 2(2ℓ− 1)(ℓ− 1)(deg h− 2)

and

deg g ≤ 2(2ℓ− 1)(ℓ− 1).

This follows at once from [20]. We again remark (as in [20]) that the exclusion of Laurent-
polynomials h of the shape as in the theorem cannot be avoided as follows e.g. from the example
Tn(x+x

−1) = xn+x−n. Thus these exceptions also have to be taken into account in the present
Main Theorem.

Remark 1.1 Suppose that f ∈ k[x] is a polynomial which is decomposable as a rational function:
f = g ◦ h, g, h ∈ k(x). Then observe that, by changing h into λ ◦ h for a λ ∈ PGL2(k), and changing
g into g ◦ λ−1, which does not change deg g, deg h, we may assume that g, h are polynomials: in fact,
the preimage f−1(∞) consists just of ∞ (since f is a polynomial) and, by choosing λ suitably, the same
becomes true for g and h. Thus f is decomposable also as a polynomial.

Similarly for the case when f is a Laurent-polynomial, but neither f ∈ k[x] nor f ∈ k[x−1]: First, the
preimage f−1(∞) is {0,∞}. If f = g ◦ h, then g−1(∞) is either {P} or {P,Q}, P,Q ∈ P1(k), P 6= Q and
we have h−1(P ) = {0,∞} or h−1({P,Q}) = {0,∞}, respectively. In the first case we may choose λ so
to assume that P = ∞ and thus g is a polynomial and h a Laurent-polynomial. In the second case, if
h−1(P ) = {0}, h−1(Q) = {∞}, we choose a λ so to transform Q into ∞ and P into 0 (this is possible
since PGL2(k) is doubly-transitive). Then g becomes a Laurent-polynomial and h(x) = cxn becomes of
the forbidden shape.

(In particular, this shows that when h is a (Laurent-) polynomial, the exceptional shapes of the Main
Theorem may be reduced to the shapes stated in Theorem 1 and Theorem 2.)

The normalization described in this remark shall be used repeatedly in what follows.
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These two theorems present the current state of the problem. In the next statements we give
the new results, which together with the stated theorems will yield the Main Theorem.

With the phrasing ‘(non-)Laurent case’ we refer to the shape of h; however, even when h is a
(Laurent-) polynomial, the situation differs from the previous two theorems in the fact that we
compose h with a rational function g (rather than a polynomial).

Of course it may happen that h /∈ k[x, x−1] but λ ◦ h ∈ k[x, x−1] for a suitable λ ∈ PGL2(k),
so that after changing g, h resp. by g ◦ λ−1, λ ◦ h we are in the Laurent case. To express rapidly
this fact, we have found it convenient to introduce the following simple definition:

Definition NL: h satisfies NL :⇐⇒ For any λ ∈ PGL2(k): λ ◦ h /∈ k[x, x−1].

Namely, h satisfies NL (Non-Laurent) if h cannot be turned into a Laurent-polynomial by ap-
plying a linear fractional transformation on the left.

This definition allows us to reduce more simply the remaining cases to the following theorems:

Theorem 3 (Laurent case for rational functions). Let ℓ be a positive integer and let f ∈ k(x)
be expressible as f(x) = P (x)/Q(x), where P,Q ∈ k[x] have altogether at most ℓ terms. Suppose
that f(x) = g(h(x)), where g ∈ k(x), h ∈ k[x, x−1], and where h(x) 6= axn + b + cx−n for any
a, b, c ∈ k, n ∈ N. Then we have the following two cases:

(i) If P,Q are coprime in k[x], then

deg f ≤ 2(2ℓ− 1)(ℓ− 1) deg h, deg g ≤ 2(2ℓ− 1)(ℓ− 1).

(ii) In general we have

deg f ≤ (2016 · 5ℓ)(deg h− 1), deg g ≤ 2016 · 5ℓ.

Note that the inequalities on the right for deg g follow from the respective ones on the left for
deg f , in view of deg f = deg g deg h.

We remark that our proof of the last case (ii) in this statement is the most involved step in
the whole paper and requires a result of Müller [11] relying on the classification of finite simple
groups. This is not needed in the case (i), when f is in reduced form, since we may apply [20,
Theorem 2*] to the numerator and the denominator to get the conclusion; for this case we do
not even need the auxiliary results in Section 2 or the normalizations from Section 3; we give
the proof, which is independent of the rest, in Subsection 5.1.

We also point out that Theorem 3(ii) gives a partly new proof for Theorems 1, 2 (with a worse
bound for deg f).

Theorem 4 (Non-Laurent case for rational functions). Let ℓ be a positive integer and let f ∈
k(x) be expressible as f(x) = P (x)/Q(x), where P,Q ∈ k[x] have altogether at most ℓ terms.
Suppose that f(x) = g(h(x)), where g, h ∈ k(x) with both h satisfies NL and for every equation
h(x) = p(q(x)) either q satisfies NL or q(x) = λ(axn + bx−n) for a λ ∈ PGL2(k) and some
a, b ∈ k, n ∈ N. Then

deg f ≤ (267 · 5ℓ)(deg h− 1), deg g ≤ 267 · 5ℓ.

Before we continue with some remarks on the stated results we now give at once the deduction
of the Main Theorem from the other theorems; the proof is almost immediate:

Deduction of the Main Theorem from Theorems 1, 2, 3 and 4: If f is a polynomial or
a Laurent-polynomial that is decomposable as f(x) = g(h(x)) with h(x) not of the forbidden
shape (of the Main Theorem), then by Remark 1.1 we may change the decomposition (from
f = g ◦ h to f = (g ◦ λ−1) ◦ (λ ◦ h) with λ ∈ PGL2(k)) so that for the new composition factors
we have either g, h ∈ k[x] or g ∈ k[x], h ∈ k[x, x−1]; then the result follows by Theorem 1 or
Theorem 2 respectively (observe that by the assumptions of the Main Theorem the modified
h certainly cannot be of the forbidden shape of the respective theorem). (We mention that as
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noted right before Theorem 4, this opening paragraph could be skipped and subsumed in the
arguments below.)

Now let f ∈ k(x) and f(x) = g(h(x)) with h(x) not of the forbidden shape (of the Main
Theorem). If h satisfies NL and for every equation h(x) = p(q(x)) either q satisfies NL or
q(x) = λ(axn + bx−n) for a λ ∈ PGL2(k) and some a, b ∈ k, n ∈ N, then the conclusion follows
from Theorem 4.

Otherwise we have two cases:
In the first case, h does not satisfy NL, so there is a homography λ ∈ PGL2(k) with λ ◦ h ∈

k[x, x−1]; now, on replacing g, h resp. by g ◦ λ−1, λ ◦ h, we may assume that h ∈ k[x, x−1], and
the conclusion follows from Theorem 3.

In the second case there exists an equation h(x) = p(q(x)) with p, q ∈ k(x) such that λ∗ ◦ q ∈
k[x, x−1] for a suitable λ∗ ∈ PGL2(k) and q(x) is not of the stated shape λ(axn + bx−n). In this
case, by changing the equation h = p ◦ q into h = (p ◦ (λ∗)−1) ◦ (λ∗ ◦ q), we may again assume
that q ∈ k[x, x−1], and we have a fortiori that q(x) 6= axn + b+ cx−n for any a, b, c ∈ k, n ∈ N.
Also, we have now the decomposition f(x) = (g ◦ p)(q(x)), and we may apply to it Theorem 3
with g ◦ p in place of g and q in place of h. Since deg(g ◦ p) ≥ deg g, the result again follows.

Since there are no further cases, the deduction of the Main Theorem is complete. �

Remark 1.2

(i) We did not make any special effort to derive good numerical constants in the theorems; however,
the exponential dependence of the bound on ℓ cannot be improved using our way of reasoning.
(This step occurs in the subdivision - introduced below - of the set of exponents appearing
in P,Q into ‘large’ and ‘small’ ones; such a subdivision was not necessary and not taken into
account in the polynomial and Laurent case treated in previous papers, which explains the better
dependence on ℓ obtained therein.) Also, we do not have lower bounds better than linear in ℓ
and we do not have definite ideas on what could be a best-possible shape for them.

(ii) Note that in the most general case we do not assume that the ‘lacunary’ expression f(x) =
P (x)/Q(x) for f is in reduced form.

(iii) The issue arises if more is true, namely a similar bound on the mere assumption that the
numerator is lacunary. This in turns naturally leads to the following strictly related question:

Question: Suppose that f is a polynomial with at most ℓ terms, and that it is divisible by
g(h(x)) for g, h ∈ k[x], deg g, deg h ≥ 2, h(x) not of the form axn + b, a, b ∈ k, n ∈ N. Is is true
that deg g is necessarily bounded only in terms of ℓ?

We feel that this question might have a positive answer in general, but certainly a proof would
require new methods. Some evidence for a positive answer is provided by the case when f has at
most two terms; we treat this special case in the appendix to this paper.

The strategy of our method is very roughly as follows: We choose a conjugate y 6= x of x
over the field k(h), so we have h(x) = h(y). The equation f(x) = g(h(x)) ∈ k(h) then implies
f(x) = f(y). Thus we end up with P (x)Q(y) − P (y)Q(x) = 0. We view this last equation
as an S-unit equation with ‘few’ terms (here we use the lacunarity), and apply a theorem of
Brownawell-Masser (cf. Lemma 2) to bound the maximal involved degree. However, this theorem
can be applied directly only to equations in which no proper subsum vanishes. Hence we are led
to study the vanishing subsums of the numerator of f(x)−f(y). If f is a (Laurent-) polynomial,
this is easier because each vanishing subsum may then be written as p(x)− q(y) = 0 and has the
same ‘separated variables’ structure as the original equation. (This analysis was the one carried
out in the previous papers on the topic.)

On the other hand, if f is not a Laurent-polynomial, the vanishing subsums may have a priori
a different structure. To study them we then distinguish between ‘large’ and ‘small’ exponents.
In order to take advantage of the alluded upper bound, we are led to investigate lower bounds
for the degree degK(z) = [K : k(z)] in K = k(x, y) of expressions of the form z = xmyn

with m,n ∈ Z; we need a bound of the shape degK(z) ≥ εmax{|m|, |n|} degK(x) for some
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specific number ε > 0, where the dependence on degK(x) is essential in comparison with the
upper bound that follows from the Brownawell-Masser inequality. (This problem reflects another
major difference with the case of Laurent-polynomials.)

In order to overcome this issue we use the partition of the exponents mentioned before and
moreover we require detailed information on the irreducible factors of h(Y ) − h(x) and their
associated Puiseux series; in turn, this involves a deep result by Müller in one of the cases into
consideration. We do not enter now in any detail concerning this point; we shall comment further
on this at the end of Section 3.

The paper is organized as follows: In the next section we will collect some auxiliary results
which are all well known and which are needed in our proof. We formulate these results in a way
suitable for our applications. In Section 3 we start with some first reductions and normalizations
and we study lower bounds for the degree of xmyn. In Section 4 we give the proof of a ‘big’
part of our theorem; in other words we prove Theorem 4. In this case a lemma by Hajós (cf.
Lemma 1) will also be of importance. In Section 5 we prove the result in the Laurent case for
rational functions (that is Theorem 3), and then in the last section we give the proof of the
corollary. Finally, in the appendix we discuss the afore-mentioned result concerning the more
general question.

2. Auxiliary results

In this section we collect some auxiliary results that we will use in the proof of our theorems
and that already appear in the literature; in general we shall give no proofs.

Lemma 1 (Hajós lemma). Let f ∈ k[x] have ℓ non-constant terms and let β ∈ k∗. Then
ordβ(f(x)− f(β)) ≤ ℓ.

The proof of this lemma is in fact very easy by calculating the first ℓ + 1 derivatives of
f(x) − f(β) and then reducing the resulting linear system of equations in the ℓ + 1 unknown
coefficients to a system of Vandermonde type.

Before we state our next lemma we briefly review the theory of valuations/places on function
fields (for which we refer e.g. to [10]).

For each θ ∈ k we have a place of k(x) whose valuation vθ expresses the order of vanishing
at θ, namely is given by vθ(f) = n if f(x) = (x − θ)ng(x) with g(θ) 6= 0. Moreover, there is a
place ∞ whose valuation v∞ is given by v∞(f) = degQ − degP for f(x) = P (x)/Q(x) with
P,Q ∈ k[x]. As a matter of terminology, if f has a pole at v, i.e. v(f) < 0, then the order ord(f)
of v as a pole of f is given by −v(f) > 0.

In this way all (normalized) valuations of k(x)/k are obtained.
Now, let K be a finite extension of k(x). Each of the places of k(x) can be extended in at most

[K : k(x)] ways to a place on K and in this way all places v on K are obtained (normalized so
that v(K\{0}) = Z). Furthermore, the places of K are in a one-to-one correspondence with the
points over k of a(ny) nonsingular complete curve over k with function field K; in particular,
for the rational function field k(x) the places are in one-to-one correspondence with the points
of P1(k).

For an element f ∈ K we define the degree (sometimes also called the height) of f with
respect to K by

degK(f) =
∑

v

max{0, v(f)} = −
∑

v

min{0, v(f)},

where the sum is taken over all places of K; thus it is just the number of zeros respectively poles
of f counted according to multiplicity. Equivalently, we have degK(f) = [K : k(f)]. A useful
property for us is degK(f)− degK(g) ≤ degK(fg) ≤ degK(f) + degK(g) for fg 6= 0.

As in the quoted previous papers on this topic, we shall need the following crucial result on
S-units in function fields.
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Lemma 2 (Brownawell-Masser). Let K/k be a function field (in one variable), of genus g, and
let z1, . . . , zs ∈ K be not all constant and such that 1 + z1 + . . . + zs = 0. Suppose also that no
proper subsum of the left side vanishes. Then

max{degK(zi)} ≤
(

s

2

)

(2g− 2 + |S|),

where S is any set of places of K containing all zeros and poles of the zi.

We have taken this formulation from [18, 20], but we mention again that it is an immediate
consequence from [4] (or from [17]).

Our next lemma involves permutation groups, so we recall some standard definitions before
giving the statement. Let Sn,An denote the symmetric group and the alternating group of
n elements respectively. Assume that a group G is acting on a set Ω and let α ∈ Ω. The
orbit of α under G is defined by Gα = {gα : g ∈ G} and the point stabilizer of α in G by
Gα = {g ∈ G : gα = α}. A group is said to act transitively on Ω if it has only one orbit, i.e.
Gα = Ω for all α ∈ Ω. Let m be an integer with 1 ≤ m ≤ |Ω| and denote by Ωm the mth

cartesian power of Ω. G acts on Ωm componentwise and the subset Ω(m) of unordered m-tuples
of distinct points is G-invariant for every choice of G and m. We say that G is m-transitive if G
is transitive on Ω(m). Finally, let G be a group acting transitively on a set Ω with at least two
points. We call G primitive if each point stabilizer Gα is a maximal subgroup of G. For these
definitions we refer e.g. to [5].

Lemma 3 (Müller). Let h be an indecomposable Laurent-polynomial, written as h(x) = p(x)/xe,
p ∈ k[x], e ∈ N, and suppose that d = deg h = deg p > e > 0. Then the Galois group G of the
equation h(X) − h(x) over k(h(x)), as a permutation group on the d roots, is primitive and
contains an element with exactly two cycles of lengths say n and d − n; it satisfies at least one
of the following:

(i) Ad ⊆ G,
(ii) d = m2 with 1 < m ∈ N, n = ma with gcd(m, a) = 1, G = (Sm × Sm) ⋊ Z/(2) and the

stabilizer of a point is conjugate to (Sm−1 × Sm−1)⋊ Z/(2),
(iii) d ≤ 64.

This statement follows immediately from the paper [11] (which in turn is essentially contained
in [12]); more precisely it follows from Theorem 4.8, the additional information in case (ii) comes
from Theorem 3.3 that contains the main classification result for primitive permutation groups
with cyclic two-orbit. The upper bound appearing in case (iii) could be replaced by an explicit
list of sporadic groups, but since this has only a small impact on the numerical estimates in our
theorems, we prefer not to deal with such exceptional cases of small degree.

We mention that G being 2-transitive amounts to (h(X) − h(Y ))/(X − Y ) being absolutely
irreducible over k. This is an information (not always verified) that is important in our applica-
tion to the Laurent-case for rational functions. (For polynomials the corresponding classification
is due to Fried [7]; the paper of Müller [11] also records precise information on the Galois group
in this case, namely for an indecomposable h ∈ k[x], d = deg h ≥ 32 the Galois group G of
h(X) − h(x) over k(h(x)) is either Z/(p) or the dihedral group of p elements for some prime
p = d or Ad or Sd; see [11, Theorem 4.9, p. 63].)

We end this section by collecting some information on the Puiseux series for the equation
h(Y ) = h(x) for an h ∈ k(x).

Lemma 4. Let h(x) = xep(x)/q(x) with p, q ∈ k[x] coprime, p(0)q(0) 6= 0, e ∈ Z\{0}. Define
s = e + deg p − deg q. Assume that h(∞) = ∞, i.e. s > 0. Let y be a solution of the equation
h(Y )− h(x) = 0 in an algebraic closure of k(x).
For e < 0, the dominant terms of the possible Puiseux series for y are as follows.
At x = 0 there are precisely
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1. |e| Puiseux series with y = θx+ . . . , θ|e| = 1,

2. s Puiseux series with y = θx−|e|/s + . . . , θs = 1,
3. deg q Puiseux series with y = θ + . . . , where θ ∈ k∗ satisfies q(θ) = 0,

and at x = ∞
1. s Puiseux series with y = θx+ . . . , θs = 1,
2. |e| Puiseux series with y = θx−s/|e| + . . . , θ|e| = 1,
3. deg q Puiseux series with y = θ + . . . , where θ ∈ k∗ satisfies q(θ) = 0.

For e > 0, the first terms of the Puiseux series are as follows.
At x = 0 there are precisely

1. e Puiseux series with y = θx+ . . . , θe = 1,
2. deg p Puiseux series with y = θ + . . . , where θ ∈ k∗ satisfies p(θ) = 0,

and at x = ∞
1. s Puiseux series with y = θx+ . . . , θs = 1,
2. deg q Puiseux series with y = θ + . . . , where θ ∈ k∗ satisfies q(θ) = 0.

We remark that the dots here indicate that the terms which follow have a higher order of zero
than the first one (at the relevant point).

Proof. We start with the case e < 0 and x = 0. Observe that deg h = deg p = s+ |e|+deg q > 0.
From the definition of y we have

(1) h(x) =
p(x)

x|e|q(x)
=

p(y)

y|e|q(y)
= h(y).

At x = 0 we have h = ∞ and therefore either y = 0 or y = ∞ or y = θ ∈ k∗ with q(θ) = 0. In

the first case, equation (1) implies that the Puiseux expansion at x = 0 of y satisfies y|e| + . . . =

x|e|+ . . . and therefore y = θx+ . . . for θ an |e|th root of unity. Clearly, we have |e| series of this
type. In the second case, (1) implies the relation

x|e| + . . . =
1

ys
+ . . .

and therefore y = θx−|e|/s + . . . for θ an sth root of unity. Altogether we have s series of that
type. Finally in the third case, (1) means that we have y = θ + . . ., where θ ∈ k∗ is a root of q.
Altogether there are deg q series of this type. Thus we have the result in the case x = 0.

The Puiseux factorisation of h(Y ) − h(x) at x = ∞ and the case e > 0 can be obtained
following the same line of arguments. �

We remark that in all cases when the series looks like y = θ + . . ., the root θ ∈ k∗ of q
respectively p appears as many times as its multiplicity; we shall not need this.

3. Normalizations and preliminaries on degrees

Let ℓ be a positive integer. The proofs of Theorem 3(ii) and Theorem 4, respectively, will be
done by induction on ℓ.

So let f ∈ k(x) with f(x) = P (x)/Q(x) = g(h(x)) ∈ k(x), where g, h ∈ k(x), deg g, deg h > 1,
and where P,Q ∈ k[x] are not necessarily coprime; however, we assume them not to be both
divisible by x, which we may do without affecting their number of terms. We assume that the
number of terms appearing in P,Q altogether is ℓ. By the last normalization it follows that there
are exactly ℓ− 1 non-constant terms; in particular, this implies that ℓ ≥ 2.

We shall assume throughout that h(x) is not of the forbidden shape λ(axn + bx−n) for any
a, b ∈ k, n ∈ N and λ ∈ PGL2(k). We remark that we may consider the statements also for
deg h = 1 in which case they are empty (and so trivially true) since then h(x) has forbidden
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shape.

As a second normalization we show that we may reduce to the case when

h(∞) = ∞ and g(∞) = ∞.

Let us first check that we can assume h(∞) = ∞. In fact, suppose first that we are dealing with
Theorem 3(ii), i.e. that h is a Laurent-polynomial. Then either h(∞) = ∞ or h ∈ k[x−1]. In this
last case we just replace x by x−1; observe that we continue to be in the case of Theorem 3(ii) (i.e.
the number of terms of f(x−1) = P (x−1)/Q(x−1) = xdegQ−degP (xdegPP (x−1)/(xdegQQ(x−1))
is the same as that one for f and the new h is also a Laurent-polynomial). Suppose now that
we are dealing with an h satisfying the assumptions for Theorem 4. In this case we replace g, h
resp. by g ◦ λ−1, λ ◦ h for a suitable λ ∈ PGL2(k), i.e. such that h(∞) = λ−1(∞). Again, we
remain in the case of Theorem 4. Note that the modified h continues not to be of the forbidden
shape.

Now, acting on the left of g (and thus also of f) by a suitable element in PGL2(k), we may
further achieve that g(∞) = ∞. This normalization is harmless; it does neither modify the
degree of g, nor the function h, nor the number of terms in a suitable expression for f : in fact
this replaces P,Q by two independent linear forms in them.

In conclusion, from now on we assume that h(∞) = g(∞) = ∞.

Observe also that in proving the theorems we may assume, by a further induction on deg h,
that h /∈ k(xn) for any n > 1. The theorems hold for deg h = 1 since then the statements are
empty.

For the induction step assume that we have h(x) = h∗(xm) with h∗ ∈ k(x) and m ∈ N,m > 1.
Then f(x) = g(h(x)) = g(h∗(xm)) = f∗(xm) for f∗ = g ◦ h∗ ∈ k(x). By grouping the terms
of P,Q with respect to the residue class modulo m of their degrees, we can write P (x) =
P0(x

m) + P1(x
m)x + . . . + Pm−1(x

m)xm−1, Q(x) = Q0(x
m) + Q1(x

m)x + . . . + Qm−1(x
m)xm−1

with P0, . . . , Pm−1, Q0, . . . , Qm−1 ∈ k[x]. Since P (x) = f∗(xm)Q(x) it follows that Pi(x
m) =

f∗(xm)Qi(x
m) for i = 0, 1, . . . ,m − 1. Pick a j ∈ {0, 1, . . . ,m − 1} with Qj 6= 0. Then the

equation Pj(x) = f∗(x)Qj(x) holds and thus we have

g(h∗(x)) = f∗(x) =
Pj(x)

Qj(x)
,

where the terms in Pj , Qj on the right form a subset of the terms of P,Q.
Observe that h ∈ k[x, x−1] if and only if h∗ ∈ k[x, x−1]. Also, if h satisfies NL and for every

equation h(x) = p(q(x)) either q satisfies NL or q(x) = λ(axn+ bx−n) for a λ ∈ PGL2(k), n ∈ N

and a, b ∈ k, then the same is true for h∗. In conclusion, if we are in the cases of Theorems 3(ii),
4 for h, then we are in the respective cases for h∗.

Thus each of the statements will follow by induction once we have treated the case h not a
rational function in xn, for any n > 1, since g has not changed and moreover h∗(x) cannot be
of the forbidden shape for otherwise h(x) would also be.

Next we show that it is sufficient to prove the theorems for h having one of the following two
additional properties (which exclude each other):

(H1) We have h /∈ k(xn) for any n > 1 and h is indecomposable.

(H2) We have h /∈ k(xn) for any n > 1, h is decomposable as h(x) = h̃(x + ηx−1) where
η ∈ k∗, and moreover every decomposition h(x) = p(q(x)) with deg p, deg q > 1 has
q(x) = λ(ax+ bx−1) for some a, b ∈ k∗ and a λ ∈ PGL2(k).

As to (H2), note that h(x) = h(ηx−1). If we also have h(x) = h(cx−1) for some c ∈ k∗, then
h(x) = h((c/η)x), whence c/η is a root of unity, say of exact order n, so h(x) = h∗(xn) for some
h∗ ∈ k(x). Since this can happen only for n = 1, we see that c = η, so in particular η is uniquely
determined.
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Note also that since h is not of the forbidden shape, under (H2) necessarily we have deg h̃ > 1.

We prove this reduction to either (H1) or (H2) by induction on deg h. We already noticed
that we may suppose h /∈ k(xn), n > 1. Assume now that the theorems are proved in degree
lower than deg h, the case deg h = 1 being empty since h is then of the forbidden shape.

First assume that h is indecomposable. Then it satisfies (H1) and we are done if we know the
result under this assumption.

Let us now assume that h is decomposable. We separately consider the cases of Theorem 3(ii)
and Theorem 4 respectively.

In the case of Theorem 3(ii) we have that h ∈ k[x, x−1] and that h(x) is not of the shape
axn + b+ cx−n, a, b, c ∈ k, n ∈ N. Suppose that we have a decomposition h = p ◦ q. By Remark
1.1 we may further assume (on replacing p, q resp. by p ◦ λ−1, λ ◦ q for a suitable λ ∈ PGL2(k))
that q is a Laurent-polynomial.

If in some such decomposition q(x) is not of the forbidden shape, we may replace g, h resp. by
g ◦ p, q, and apply induction on deg h. Otherwise (i.e. if we cannot find such a decomposition)
in every decomposition h(x) = p(q(x)) with q ∈ k[x, x−1], the inner factor q(x) is necessarily of
the forbidden shape (with n = 1). This says that either (H1) or (H2) holds.

Now we come to Theorem 4. Clearly, h is not of the forbidden shape since it satisfies NL.
Let h(x) = p(q(x)) be a decomposition of h; then by the assumption for Theorem 4 either q
satisfies NL or (again on replacing p, q resp. by p◦λ−1, λ◦q for a suitable λ ∈ PGL2(k)) we have
q(x) = ax + bx−1, a, b ∈ k. (Observe in fact that q does not lie in k(xn) for any n > 1 because
h does not.) If q satisfies NL, then every decomposition of q has an inner composition factor
satisfying NL or being forbidden, because otherwise h would not have this property; so we can
argue by induction as before and replace h by q. Sooner or later we arrive at a stage where either
h is indecomposable or for every such decomposition of h, we have q(x) of the forbidden shape
λ(ax+ bx−1), a, b ∈ k, λ ∈ PGL2(k). This means that (H1) or (H2) is satisfied, as wanted.

Altogether it follows that, in proving either Theorem 3(ii) or Theorem 4, we may assume (H1)
or (H2) to hold.

Hence, let us assume from now on that h is not of the forbidden shape but that it satisfies
either (H1) or (H2).

Furthermore from now on, if we use the symbols h̃ resp. η, we always refer to the special
decomposition for h appearing in (H2); especially, η denotes the (unique) constant appearing
therein.

To go on, we again shall distinguish two cases, in which we slightly modify the notation of
Lemma 4 by changing the sign of e so that it is always positive:

• h(0) = ∞; now we may assume deg h > 2 since otherwise h(x) would be of the forbidden
shape. Hence, we may write

h(x) =
p̃(x)

xeq̃(x)

with e > 0, p̃, q̃ ∈ k[x] coprime satisfying p̃(0)q̃(0) 6= 0, d = deg p̃ = deg h > 2, and finally
s = d− e− deg q̃ > 0.

• h(0) 6= ∞; by replacing g, h resp. by g ◦ λ−1, λ ◦ h with λ ∈ PGL2(k) defined by λ(x) =
x− h(0), we may assume h(0) = 0 and thus we may write

h(x) =
xep̃(x)

q̃(x)

with e > 0, p̃, q̃ ∈ k[x] coprime satisfying p̃(0)q̃(0) 6= 0, d = e + deg p̃ = deg h ≥ 2, and
finally s = deg q̃ − d > 0.
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(We point out that throughout the proof the symbols p̃, q̃, e, s and d will only be used to refer
to the quantities related to h that are introduced above.)

In the first case, namely for e < 0 or equivalently h(0) = ∞, we have the following important
lemma that plays a central role in the proofs.

Before stating it, we anticipate a simple remark that shall be useful throughout: If K is a
function field over k containing both x, y, with h(x) = h(y), we have

degK(x) = degK(y).

In fact, this follows from the general equality degK(h(u)) = (deg h) degK(u) for any u ∈ K \ k.
Lemma 5. Assume that h(0) = ∞ and that either (H1) or (H2) holds. Then there exists a
conjugate y of x over k(h), different from x and also from ηx−1 in case (H2), such that the
following holds, on putting K = k(x, y):

(i) if u ∈ k(x) is such that u(x) = u(y), then u ∈ k(h),
(ii) for all m,n ∈ N we have

degK(xmyn) ≥ 0.12max{m,n} degK(x).

Moreover, if min{e, s} ≤ 0.75max{e, s}, then (ii) holds for all m,n ∈ Z.

We remark that the precise numerical values here are relatively immaterial; for instance,
any larger number in place of 0.75 would lead to a similar statement with 0.12 replaced by
some corresponding positive number. Ultimately, this would only result in different numerical
constants in the Main Theorem. (We only observe that the larger constant we get in the lower
bound (ii), the better numerical constant shall be gotten in the theorems.)

Proof. Let y 6= x be a conjugate of x over k(h), i.e. we have h(x) = h(y). We define L = {u ∈
k(x) : u(x) = u(y)}. Note that L is a subfield of k(x) and that k(h) ⊆ L ⊆ k(x). Since y is
different from x, we have L 6= k(x). By Lüroth Theorem (cf. [14]) it follows that L = k(z) for a
z ∈ k(x); thus we get h(x) = h∗(z) with h∗ ∈ k(x). Since L 6= k(x), we have deg z > 1. Now let
us distinguish between (H1) and (H2).

We first consider (H1): In this case h is indecomposable, so since deg z > 1, we have deg h∗ = 1,
i.e. L = k(h). It clearly follows that requirement (i) is verified for any such y.

Now we turn to (H2): We have h(x) = h̃(q(x)) where q(x) = x + ηx−1 and η 6= 0. Then
h(ηx−1) = h(x) (because q(ηx−1) = q(x)). Hence ηx−1 is a conjugate of x but we have excluded
it too. (In fact recall that working under (H2), we assume y 6= x and y 6= ηx−1.)

Observe that since h(x) is not of the forbidden shape, we have deg h̃ > 1, so in particular
deg h > 2.

Going back to the above decomposition, we assume first that deg h∗ > 1. Then h = h∗ ◦ z
with deg z > 1 and deg h∗ > 1. By (H2) this implies z(x) = λ(ax+ bx−1) for some a, b ∈ k∗ and
λ ∈ PGL2(k). We have already seen (in the discussion below (H2)) that this implies b/a = η.
It follows that q(x) = cλ−1(z) for c = 1/a ∈ k and, since L = k(z), we have also q ∈ L, which
means q(x) = q(y). But this is a quadratic equation in y which has the two roots y = x and
y = ηx−1, and we have excluded from the beginning these possibilities. Therefore this case
cannot occur.

Thus we have deg h∗ = 1. However, this means that L = k(h) and so (i) is verified in this case
too.

It follows that, apart from the choice y = x and possibly y = ηx−1 (which may only occur in
the case (H2)), any other conjugate y of x over k(h) will automatically satisfy (i). (Note that
such a conjugate certainly exists, because we have deg h > 2 since otherwise h(0) = h(∞) = ∞
implies that h(x) is of the forbidden shape.)

We now turn to (ii) and to the additional statement.
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For (ii) let z = xmyn with m,n ∈ N. In the sequel we shall show that there exists a suitable
choice for the conjugate y (y 6= x and y 6= ηx−1 in case (H2)) so to satisfy (ii) for all such m,n;
this choice shall be made along the proof because we think this leads to better clarity.

However, let us immediately note that if |m − n| ≥ 0.12max{m,n}, then our inequality is
true no matter the choice of the conjugate. In fact, taking into account that degK(x) = degK(y),
from the properties of the degree we infer that in this case we have

degK(z) ≥ (max{m,n} −min{m,n}) degK(x) ≥ 0.12max{m,n} degK(x),

proving (ii).
Therefore from now on in the proof of (ii), we shall choose the sought conjugate on assuming

that m ≥ 0.88n > 0.

For a given choice of the conjugate y, we also put δ = δy := [k(x, y) : k(x)], so degK(x) =
degK(y) = δ.

Finally, we put ε = 0.14. We will show that degK(z) ≥ εmδ; this then implies that degK(z) ≥
0.88εmax{m,n}δ ≥ 0.12max{m,n}δ and thus the sought inequality.

We count the zeros of z through the zeros of x. Assume that v is a zero of x, i.e. v(x) > 0.
We have now two possibilities for y:
If v(y) ≥ 0, then v(z) ≥ mv(x) ≥ εmv(x) > 0.
If v(y) < 0, then by Lemma 4 (or just by using the equation h(x) = h(y)) we have−sv(y) = ev(x)
and therefore

v(z) =
(

m− n
e

s

)

v(x) = m
(s

e
− n

m

) e

s
v(x).

If

(2)
(s

e
− n

m

)

≥ ε
s

e

then we get

degK(z) =
∑

v

max{0, v(z)} ≥
∑

v(x)>0

max{0, v(z)} ≥ εm
∑

v(x)>0

v(x) = εmδ,

because δ = degK(x) =
∑

v(x)>0 v(x).

The same inequality also follows if we assume that, in the irreducible factor of h(Y ) − h(x)
defining y, there are at least εδ Puiseux series at x = 0 of type 1. or 3., in the notation of Lemma
4; in fact, in such case we have

degK(z) ≥ m
∑

v(x) ≥ εmδ,

where the sum is taken over all zeros of x, and corresponding to a Puiseux series at x = 0 of
type 1. or 3. in Lemma 4.

So in proving our conclusion let us assume that (2) is not true and that the number of Puiseux
series at x = 0 of type 1. and 3. is less than εδ.

Now we count the poles of z through the poles of x.
If v(x) < 0, then either v(y) ≤ 0 and therefore v(z) ≤ mv(x) ≤ εmv(x) < 0 or v(y) > 0. In the
last case, again by Lemma 4, we have ev(y) = −sv(x), which implies

v(z) = m
(e

s
− n

m

) s

s
v(x).

As before we get degK(z) ≥ εmδ unless
(e

s
− n

m

)

< ε
e

s

and unless the number of Puiseux series at x = ∞ of type 1. and 3. is less than εδ.

In the remaining cases we have by the last displayed inequality and by (2) that

(1− ε)
e

s
<

n

m
and (1− ε)

s

e
<

n

m
.
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But since m ≥ 0.88n > 0 we get

max{e, s}
min{e, s} <

n

(1− ε)m
≤ 1

0.88(1− ε)
≤ 1

0.75
.

It follows that

(3) min{e, s} > 0.75max{e, s}.
Moreover, we also have that the number of Puiseux series of type 1. and 3. at x = 0 and at
x = ∞ is less than εδ in every irreducible factor defining a y 6= x, ηx−1 over k(h).

The number of Puiseux series at x = 0 of type 1. and 3. in the Puiseux factorisation of the
numerator of (h(Y ) − h(x))/(Y − x) is e + deg q̃ − 1 = d − s − 1, which follows from Lemma
4. (The subtraction of 1 comes from the factor Y − x which clearly contains exactly one series
of type 1. or 3. at x = 0, whereas the factor xY − η, in case (H2), has no series of this type at
x = 0 at all.)

Since we are in the case where we assume that in each irreducible factor, of degree δ, of
the numerator of (h(Y ) − h(x))/(Y − x) there are at most εδ such series, by summing up the
contributions from each factor we conclude that d−s−1 < ε(d−1) and (1−ε)d+ε−1 < s. From
(3) we get 0.75s < e. Hence, we obtain d−deg q̃ = e+ s > 1.75s > 1.75(1− ε)d−1.75(1− ε) and
therefore 0 ≤ deg q̃ < (−0.75+1.75ε)d+1.75(1−ε) ≤ 3(−0.75+1.75ε)+1.75(1−ε) = −0.01 < 0.
(In fact we have used that by our choice ε = 0.14 we have −0.75 + 1.75ε < 0 and that d ≥ 3.)

This contradiction implies that in at least one irreducible factor the number of Puiseux series
at x = 0 of type 1. and 3. is ≥ εδ and by choosing y as a root corresponding to such a factor we
conclude the sought inequality. (We could have also argued with the number of Puiseux series
at x = ∞ of type 1. and 3. and on using that s > 0.75e.)

Finally, we prove the remaining part of the statement. We have already seen that, if
min{e, s} ≤ 0.75max{e, s}, then we get the sought lower bound for degK(z) for all positive
exponents independently of the choice of the irreducible factor from which we take y (excluding,
as always, y = x and y = ηx−1 in case (H2)). Observe also that the case of both exponents
negative follows trivially from the positive case since degK(z) = degK(1/z).

Now we consider the exponents of opposite sign. Let z = xmyn with m,n ∈ Z and mn < 0.
As above, if ||m| − |n|| ≥ 0.12max{|m|, |n|}, then the sought inequality holds independently of
the choice of the conjugate.

Therefore, and since degK(z) = degK(1/z), we may just consider the cases z = xmy−n with
m ≥ 0.88n > 0. We put ε = 0.14 as before. We will again show that degK(z) ≥ εmδ from which
it then follows degK(z) ≥ 0.88εmax{m,n}δ ≥ 0.12max{m,n}δ and so the sought inequality.

As above, we count the zeros of z through the zeros of x. Let v be such a zero of x. If v(y) ≤ 0,
then v(z) ≥ mv(x). Therefore, if there are ≥ εδ Puiseux series at x = 0 of type 2. or 3. in at
least one irreducible factor, then we can choose it to define y and the sought inequality follows.
Similarly, arguing with the poles of x, it suffices that at least one of the factors contains ≥ εδ
Puiseux series at x = ∞ of type 2. or 3. since then we again get the sought inequality for the
corresponding y.

We now show that the assumption min{e, s} ≤ 0.75max{e, s} implies the existence of such a
factor.

Assume that 0.75s ≥ e and that at x = 0 all factors different from Y − x, xY − η have
at most εδ Puiseux series at x = 0 of type 2. or 3. The arguments under (H1) and (H2) are
slightly different; we first consider (H2): Then d − e − 1 = s + deg q̃ − 1 < ε(d − 1) (now
the subtraction of 1 comes from the factor xY − η which clearly contains exactly one series
of type 2. or 3. at x = 0, whereas the factor Y − x has no series of this type at x = 0 at
all). It follows that d − deg q̃ = e + s ≤ 1.75s < 1.75ε(d − 1) − 1.75 deg q̃ + 1.75 and therefore
0 ≤ 0.75 deg q̃ < (1.75ε−1)d+1.75(1−ε) ≤ 3(1.75ε−1)+1.75(1−ε) = 3.5ε−1.25 = −0.76 < 0,
a contradiction (by our choice ε = 0.14). In the case (H1) the assumption that at x = 0
all factors different from Y − x (now there is no factor xY − η) have at most εδ Puiseux
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series of type 2. or 3. implies d − e = s + deg q̃ < εd, and then the contradiction follows from
0 ≤ 0.75 deg q̃ < (1.75ε− 1)d < 0 by our choice of ε.

If 0.75e ≥ s one can argue similarly with the Puiseux series at x = ∞ by using that ε = 0.14.
Thus the proof of the statement is complete. �

In the second case, namely e > 0 or equivalently h(0) = 0, the situation is simpler and we
need less. Here we have the following

Lemma 6. Assume that h(0) = 0 and that either (H1) or (H2) holds. Then there exists a
conjugate y of x over k(h), different from x and also from ηx−1 in case (H2), such that the
following holds:

(i) if u(x) = u(y), u ∈ k(x), then u ∈ k(h),
(ii) for all m,n ∈ N we have

degK(xmyn) ≥ max{m,n} degK(x),

where K = k(x, y).

Proof. For (i) we can argue as in the previous lemma; just observe that the alternative (H2)
is clearly excluded since we have h(∞) = ∞ and h(0) = 0, hence h(x) cannot be of the shape

h̃(x + ηx−1) with η 6= 0. It follows that for every conjugate y of x over k(h), that is differ-
ent from x, condition (i) will be satisfied. Let y be such a conjugate and define δ = [k(x, y) : k(x)].

Now we prove (ii). Let z = xmyn,m, n ∈ N. We may assume that m ≥ n ≥ 0 since otherwise
we just have the change the role of x and y (observe that here we have already chosen the
conjugate y) in the arguments below. As in the proof of Lemma 5 we count the zeros of z by
going through the zeros of x. Assume that v(x) > 0. Clearly, v(y) < 0 is impossible and so we
have v(y) ≥ 0. In this case we get v(z) ≥ mv(x). It immediately follows that

degK(z) ≥ mδ

independently of the factor from which we choose y. This already proves the statement. �

Note that in both cases for h (that is for both possible values for h(0)) we have, for every
conjugate y of x over k(h), that degK(x) = degK(y) ≤ d − 1 (as follows immediately from
h(x) = h(y)).

Further strategy: Let us emphasize that the lower bounds obtained in the last two lemmas
work only on additional conditions, namely concerning the ratio s/e or the signs of m,n.
In the non-Laurent case and for h(0) = 0 there are now different devices which prevent
us from the need of more, but in the remaining situations, i.e. in the Laurent case with
h(0) = ∞, we need a bound which does not depend on these issues: Therefore, to overcome
this difficulty, we start there by choosing a factor (or equivalently a conjugate y) so that
Lemma 5(i) holds. Further, if s/e is not near to 1 we can choose it so that the bound
holds for all m,n, whereas if s/e is near to 1, we can only say that the bound holds for
non-negative m,n for an appropriate choice of the factor. Hence, no difficulty arises if s/e
is not near to 1. In the case when s/e is near to 1, we could first choose the factor so that
the bound holds for non-negative m,n, but then the factor is fixed and we cannot change it
anymore. This means that if we want the estimate for all m,n ∈ Z we need a priori more
information on the possible factors and this is the place where the result of Müller [11] will
play an essential role (see Subsection 5.2 for the precise statement and the detailed proof of this).

After these remarks we are now ready to prove Theorem 3(ii) and Theorem 4, which we will
do in the following two sections. Before we start we summarise, for the readers convenience,
some points of the proof.



COMPOSITE RATIONAL FUNCTIONS WITH FEW TERMS 15

In the first place, we are arguing by induction on ℓ and, for given ℓ, also by a second induction
on deg h.

Further, we recall the normalizations obtained so far: We may assume that P,Q are not both
divisible by x, that g(∞) = h(∞) = ∞, that h(0) ∈ {0,∞} and that h satisfies (H1) or (H2).
(This last reduction has been shown in Section 3, before Lemma 5.)

4. The non-Laurent case for rational functions

In this section we shall give the proof of Theorem 4. Let f(x) = g(h(x)) with the notation
and normalizations just recalled.

Note that the assumption that h satisfies NL implies that deg q̃ ≥ 1 and deg p̃ ≥ 1, where we
refer to the displayed equations h(x) = x±ep̃(x)/q̃(x) just before Lemma 5. (E.g., if p̃ would be
constant, 1/h would be a Laurent-polynomial.)

As before, we shall consider two cases depending on whether h(0) = ∞ or h(0) = 0.

4.1. Proof of Theorem 4 in the case h(0) = ∞. First we shall use the lacunarity of f to
partition the set Σ of exponents appearing in P,Q into two groups with a controlled gap. We
set

Σ = {0 = m1 < m2 < · · · < mℓ}
for the set of exponents appearing in P,Q (ordered by size); especially we have mℓ ≥ deg f (with
equality if P,Q are coprime). Observe that |Σ| = ℓ ≥ 2. We partition (0,mℓ] into infinitely many
intervals (mℓ/3,mℓ], (mℓ/9,mℓ/3], . . . . It follows that at least one interval, say (mℓ/3

l,mℓ/3
l−1]

with 2 ≤ l ≤ ℓ, is disjoint from Σ. We set

ΣL = {m ∈ Σ : m > mℓ/3
l−1},

ΣS = {m ∈ Σ : m ≤ mℓ/3
l}.

So Σ = ΣL ∪ ΣS and any difference m′ −m,m′ ∈ ΣL,m ∈ ΣS satisfies

m′ −m > (2/3l)mℓ.

Moreover, the difference between any two elements in ΣS is at most mℓ/3
l.

Let y be the conjugate of x over k(h) from Lemma 5. From the equation f(x) = g(h) ∈ k(h)
we deduce f(x) = f(y). Writing f(x) = P (x)/Q(x) we get the equation

P (x)Q(y)− P (y)Q(x) = 0.

This gives a relation involving terms of the form xmyn with m,n ∈ Σ and with at most ℓ2 − 1
such summands. (Recall in fact that f(∞) = ∞, so mℓ appears only in P and this implies that
xmℓymℓ does not occur in the relation above.)

We say that a term of the said form is of type LL if (m,n) ∈ ΣL×ΣL; similarly terms of type
SL, LS and SS are defined.

We partition the sum on the left of this equation into minimal vanishing subsums, where no
further proper subsum vanishes. (This partition may be possibly done in several ways; we can
choose freely one of them.) Observe that in order to apply Lemma 2 to one of these minimal
vanishing subsums we first have to normalize it, on dividing by one of the terms, so that the
constant term 1 appears in the sum.

Let us assume that there is such a minimal vanishing subsum containing a term of type LL
and another one of type SS. The ratio z of these terms is of shape xmyn where m,n ∈ ΣL −ΣS .
So m and n are > (2/3l)mℓ. An application of Lemma 5 leads to

degK(z) ≥ 2ε

3l
mℓδ ≥

2ε

3ℓ
mℓδ,
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where K = k(x, y), δ = degK(x) = degK(y) = [K : k(x)] and ε = 0.12. Then, by Lemma 2, we
get

2ε

3ℓ
mℓδ ≤

(

ℓ2 − 2

2

)

(2g− 2 + |S|),

where g is the genus of k(x, y). We have

g ≤ (δ − 1)2

(where we use that δ = degK(x) = degK(y) and therefore the bound follows from Castelnuovo’s
inequality; cf. [14, III.10.3 Theorem]).

Further, the set S consisting of the zeros and poles of x and y in K satisfies |S| ≤ 2(degK(x)+
degK(y)) ≤ 4δ and so 2g− 2 + |S| ≤ 2(δ − 1)2 − 2 + 4δ = 2δ2. Therefore we get

mℓ ≤
3ℓ

2ε

(

ℓ2 − 2

2

)

2δ ≤ 3ℓ

ε

(

ℓ2 − 2

2

)

(d− 1) ≤ (267 · 5ℓ)(d− 1),

where we have used the inequality

(4)

(

ℓ2 − 2

2

)

=
(ℓ2 − 2)(ℓ2 − 3)

2
≤ 32 ·

(

5

3

)ℓ

.

(Here the constant 32 is obtained by bringing the exponential term to the left and calculating
the maximal values of the resulting function in ℓ by differentiation; this gives a polynomial
equation of degree 4 that has its positive roots at 1.5717... and at 8.1381....)

If there is a minimal vanishing subsum that involves both terms of type LS and of type SS,
then the ratio z is of the shape z = xmyn with m ≥ (2/3l)mℓ and |n| ≤ mℓ/3

l. Hence,

degK(z) ≥ |m| degK(x)− |n| degK(y) = (|m| − |n|)δ ≥ 1

3ℓ
mℓδ

leading even to a better bound than before. We can argue similarly for subsums involving terms
of type SL and SS.

We may therefore assume that each minimal vanishing subsum involves either just terms of
the type SS or the rest (i.e. (ΣL × ΣS) ∪ (ΣS × ΣL) ∪ (ΣL × ΣL)). Let us then write

P (x) = a(x) +A(x)

Q(x) = b(x) +B(x)

where the capitals involve precisely those exponents which lie in ΣL. The full relation is

a(x)b(y)− a(y)b(x) +A(x)B(y)−A(y)B(x)

+A(x)b(y)−A(y)b(x) + a(x)B(y)− a(y)B(x) = 0

and the above shows that we may assume

a(x)b(y) = a(y)b(x).

Now we show that we can also reduce to the assumption a(x)b(x) 6= 0. In the first place,
a(x) 6= 0 since a(x) involves a constant term; this follows from P (0) 6= 0, which in turn is
implied by f(0) = g(h(0)) = g(∞) = ∞. (Recall also that, although P,Q are not supposed to
be coprime, we are working under the harmless normalization that they do not both vanish at
0.)

For the reduction to the crucial fact that b(x) 6= 0 we will use that we are in the non-Laurent
case (in fact we only need deg q̃ ≥ 1, which is implied by NL). We start by writing

f(x) =
P (x)

Q(x)
=

P (x)

xEQ̃(x)
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with E > 0, P (0)Q̃(0) 6= 0. (Observe again that we have f(0) = g(h(0)) = g(∞) = ∞.) Moreover,

P (x) and xEQ̃(x) have ℓ− 1 non-constant terms altogether. We write

g(x) = axord∞(g) + . . .

up to terms of smaller order at x = ∞, where a ∈ k∗. Recall that h satisfies NL, so q̃ is not
constant and we may pick a root θ ∈ k∗ of q̃, say of multiplicity µ ≥ 1. Then at x = θ we have

g(h(x)) =
b

(x− θ)µord∞(g)
+ . . .

for some b ∈ k∗. This implies that Q̃(x) has θ as a root with multiplicity ≥ µ ord∞(g). So with

Lemma 1 we get ord∞(g) ≤ µ ord∞(g) ≤ ordθ(Q̃) ≤ ℓ− 1. It follows that

(5) E = ord0(f) = e ord∞(g) ≤ (ℓ− 1)e ≤ (ℓ− 1)(d− 1)

and thus Q(x) involves the term xE with E ≤ (ℓ− 1)(d− 1).
If E ∈ ΣL, then

mℓ ≤ (ℓ− 1)3ℓ−1(d− 1) ≤ 5ℓ(d− 1)

and we are done (here we e.g. use that the real function x
√
x takes its maximum at x = exp(1) =

2.7182...).

Hence, we may assume that E ∈ ΣS , implying b(x) 6= 0. Now this gives

a(x)

b(x)
=
a(y)

b(y)

and by the property of y expressed in Lemma 5(i) we deduce

a(x)

b(x)
= ϕ(h)

where ϕ ∈ k(x). Let xM be the largest power of x dividing both A(x) and B(x). Write A(x) =

xM Ã(x), B(x) = xM B̃(x). Since M ∈ ΣL, we note

(6) M > mℓ/3
l−1.

Furthermore, we have

f(x) =
a(x) + xM Ã(x)

b(x) + xM B̃(x)
= g(h).

Define ψ(x) := g(x)− ϕ(x), so

ψ(h) = g(h)− ϕ(h) = f(x)− a(x)

b(x)
= xM

Ã(x)b(x)− a(x)B̃(x)

b(x)Q(x)
.

Now, by a similar Hajós-argument as before, we first have

v0(ψ(h)) ≥M − v0(b)− v0(Q) ≥M − 2E ≥M − 2(ℓ− 1)(d− 1),

where we have used (5) again. We may assume that M − 2(ℓ− 1)(d− 1) > 0 since otherwise

mℓ < 2(ℓ− 1)3ℓ−1(d− 1) ≤ (2 · 5ℓ)(d− 1)

and we are done. It follows that v0(ψ(h)) = ord0(h)v∞(ψ) = ev∞(ψ) > 0, and therefore v∞(ψ) >
0 since we have e > 0; especially, we get ψ(∞) = 0 and

(7) e v∞(ψ) = v0(ψ(h)) ≥M − 2(ℓ− 1)(d− 1).

Now pick as before a θ ∈ k∗ with q̃(θ) = 0, so h(θ) = ∞ and

vθ(ψ(h)) = vθ(q̃) v∞(ψ) > 0.

Therefore Ã(x)b(x)− a(x)B̃(x) vanishes at θ of order at least v∞(ψ) > 0.
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Now, if Ã(x)b(x) 6= a(x)B̃(x), the difference has ≤ ℓ2 terms (in fact every term has a degree
of the form m+m′ −M with m,m′ ∈ Σ). So by Lemma 1 again

v∞(ψ) ≤ vθ(Ãb− aB̃) ≤ ℓ2,

whence by (7) it follows M ≤ ℓ2e+ 2(ℓ− 1)(d− 1) ≤ ℓ(ℓ+ 2)(d− 1) and by using (6) we get

mℓ < ℓ(ℓ+ 2)3ℓ−1(d− 1) ≤ (2 · 5ℓ)(d− 1)

and we are done. (The second inequality is obtained as in (4).)

On the other hand, suppose Ã(x)b(x) = a(x)B̃(x). Since Ã(x) 6= 0 (otherwise ΣL would be

empty), we get B̃(x) 6= 0 and so

Ã(x)

B̃(x)
=
a(x)

b(x)
= ϕ(h) = f(x)

and we have expressed f with a proper subset of Σ. In this case we can argue by induction on
ℓ, the case ℓ = 2 being trivial (e.g. we can repeat all arguments of this proof and observe that
b(x) 6= 0 is impossible since then Σ contains at least the three elements 0, E,mℓ). Therefore
degϕ ≤ 267 · 5ℓ−1 and thus deg f = degϕ · d ≤ (267 · 5ℓ)(d− 1).

Summing up we have proved that in all cases

deg f ≤ mℓ ≤ (267 · 5ℓ)(d− 1),

which is the sought inequality. �

4.2. Proof of Theorem 4 in the case h(0) = 0. Recall that both p̃, q̃ are non-constant; in
fact here we will only use that deg p̃ ≥ 1. We start by observing that we may also assume, on
subtracting a constant from both g, f , that

g(0) ∈ {0,∞}.
This is like saying that v0(g) 6= 0 and it implies f(0) = g(h(0)) = g(0) ∈ {0,∞}.

As before we partition the set Σ consisting of the terms contained in the numerator and
denominator of f into the two disjoint sets ΣS and ΣL. We investigate the equation f(x)−f(y) =
0, where y is the conjugate obtained in Lemma 6, and partition the terms in P (x)Q(y)−P (y)Q(x)
into minimal sets with vanishing sum.

For each monomial z = xmyn that appears as a ratio of a monomial of type LL, or LS, or SL
and a monomial of type SS in a minimal vanishing subsum, we get

degK(z) ≥ 1

3l
mℓδ ≥

1

3ℓ
mℓδ,

where δ = degK(x). Thus, by Lemma 2,

1

3ℓ
mℓδ ≤

(

ℓ2 − 2

2

)

(2g− 2 + |S|).

We have |S| ≤ 4δ and thus 2g− 2 + |S| ≤ 2(δ − 1)2 − 2 + 4δ = 2δ2. Therefore we get

mℓ ≤ 3ℓ
(

ℓ2 − 2

2

)

2δ ≤ (64 · 5ℓ)(d− 1)

by using the inequality (4).
Otherwise we have again that a(x)b(y)− a(y)b(x) = 0. Since g(0) ∈ {0,∞}, we get

g(x) = cxv0(g) + . . . ,

where c ∈ k∗. Now like before we write

f(x) =
P (x)

Q(x)
= xE

P̃ (x)

Q̃(x)
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with E ∈ Z\{0}, P̃ (0)Q̃(0) 6= 0. (Observe that we have f(0) ∈ {0,∞}.) Moreover, xmax{0,E}P̃ (x)

and x−min{0,E}Q̃(x) have ℓ − 1 non-constant terms altogether. Since p̃ is not constant, we let

θ ∈ k∗ be a root of p̃ of multiplicity µ ≥ 1. We have vθ(g(h)) = µv0(g) and thus either P̃ (x) or

Q̃(x) has θ as a root with multiplicity ≥ µ|v0(g)|. By Lemma 1 we get µ|v0(g)| ≤ ℓ− 1. Finally,
we obtain

|E| = e|v0(g)| ≤ e(ℓ− 1) ≤ (ℓ− 1)(d− 1).

We may assume that |E| ∈ ΣS (otherwise we are done), whence both a(x) and b(x) are

nonzero since now one of the two contains the constant term and the other one x|E|, and thus
we infer that

a(x)

b(x)
= ϕ(h)

and

ψ(h) = f(x)− ϕ(h) = xM
Ã(x)b(x)− a(x)B̃(x)

b(x)Q(x)
,

where xM is the largest power of x dividing both A(x) and B(x). Especially, we have M ∈ ΣL,

i.e. M > mℓ/3
l−1 (that is (6) in the previous case). Now the factor x|E| may appear in the

numerator or the denominator of the second factor. In any case

v0(ψ(h)) ≥M − 2|E| ≥M − 2(ℓ− 1)(d− 1).

We may again assume that M − 2(ℓ − 1)(d − 1) > 0 (otherwise we get the sought inequality)
and thus v0(ψ) > 0; especially, we have ψ(0) = 0. Hence, we get

ev0(ψ) = v0(ψ(h)) ≥M − 2(ℓ− 1)(d− 1).

Again if p̃(θ) = 0 for θ ∈ k∗, then h(θ) = 0 and this gives

vθ(ψ(h)) = ordθ(p̃)v0(ψ) ≥ v0(ψ) ≥
1

d− 1
(M − 2(ℓ− 1)(d− 1)).

If Ã(x)b(x) − a(x)B̃(x) 6= 0, then by Lemma 1 the left hand side of the above inequality is

≤ ordθ(Ãb− aB̃) ≤ ℓ2 and we get the sought bound as before. Otherwise, the result follows by
induction on ℓ.

Putting all the upper bounds for mℓ together we get

deg f ≤ mℓ ≤ (267 · 5ℓ)(d− 1),

which is what we want. �

5. The Laurent case for rational functions

In this section we give the proof of Theorem 3. We start with the case when f(x) = P (x)/Q(x)
is in reduced form, i.e. with P,Q ∈ k[x] coprime; here we do not need any of the normalizations
from Section 3.

5.1. Proof of Theorem 3 for reduced f . We write g(x) = g1(x)/g2(x) with g1, g2 ∈ k[x]
coprime and thus we get

P (x)

Q(x)
=
g1(h(x))

g2(h(x))
.

Since the quotient on the left side of the equation is reduced and g1, g2 are coprime, it follows
that P (x)P1(x) = g1(h(x)), Q(x)Q1(x) = g2(h(x)) with P1, Q1 units in k[x, x−1], i.e. of the
form x±n with n ∈ N. Now since PP1 has the same number of terms as P and QQ1 has the
same number of terms as Q, the result follows at once from [20, Theorem 2*]. �

We are left with the general case in which P,Q may be not coprime.
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Now we argue by induction on ℓ and we remind the reader that, by a further induction on
deg h, we have reduced to assume that either (H1) or (H2) holds. (We recall that this reduction
has been shown in Section 3, before Lemma 5.)

Let f(x) = g(h(x)) with h ∈ k[x, x−1] and with h(x) not of the shape ax+b+cx−1, a, b, c ∈ k,
where we again use the notation and normalizations described in Section 3. Therefore, we may
now write

h(x) = x±ep̃(x), p̃(0) 6= 0,

and we again have to consider the cases h(0) = ∞ or h(0) = 0 (i.e. minus or plus sign respec-
tively). Observe that deg p̃ ≥ 1 since otherwise h would be of the forbidden shape.

5.2. Proof of Theorem 3 in the case h(0) = ∞. We start by proving that there is a conjugate
y of x over k(h) satisfying (i) of Lemma 5 and

(8) degK(z) ≥ 1

63
max{|m|, |n|} degK(x)

for all z = xmyn with m,n ∈ Z. We shall set δ = degK(x) = degK(y) as usual.

We first show this property whenever y 6= x, ηx−1 and degK(y) ≤ 63. Note that this last
inequality holds, in particular, for all h with deg h ≤ 64.

Observe that for every conjugate y of x over k(h) different from both x and ηx−1, condition
(i) is fulfilled; this follows as in the proof of Lemma 5. Since deg h > 2 such conjugate certainly
exists and we go on to show that it necessarily satisfies also (8) for the relevant values of m,n.

To show (8), note that the divisors of x, y (with respect to the function field K = k(x, y))
are not proportional (otherwise xy±1 ∈ k∗, but in the opening arguments for Lemma 5 we
have already seen that only Y − x, xY − η would be admissible, and we have excluded these
possibilities).

Assume first that m ≥ n ≥ 0. If there is a valuation v with v(x) > 0 and v(y) ≥ 0, then
v(z) = mv(x) + nv(y) ≥ m ≥ mdegK(x)/63 and we are done.

Otherwise for every v with v(x) > 0 we have v(y) < 0; it follows that there is one such v with
v(x) 6= |v(y)| (here we use that the divisors are not proportional), and since degK(x) = degK(y),
there exists a v with v(x) > |v(y)| ≥ 1. Thus v(z) = mv(x)− n|v(y)| ≥ m+ (m− n)|v(y)| ≥ m.
Now assume that m ≥ −n > 0. If there is a v with v(x) > 0, v(y) ≤ 0, then we get v(z) ≥ m;
otherwise we have v(y) > 0 for all v with v(x) > 0 and as above there is such a v with v(x) > v(y),
which then implies v(z) = m+ (m+ n)v(y) ≥ m. It follows that

degK(z) ≥ max{|m|, |n|} ≥ 1

63
max{|m|, |n|}δ.

The key point in this argument is that deg h is absolutely bounded, and hence the same holds
for δ ≤ deg h − 1. So we do not have to worry about the dependence of the lower bound on δ.
In turn, this implies that we have a lower bound for degK(z) without using Lemma 5.

From now on we therefore assume that δ ≥ 64.

Now if 0.75max{e, s} ≥ min{e, s}, the sought inequality (8) follows immediately from the
additional statement in Lemma 5. We therefore assume that 0.75max{e, s} < min{e, s} or
equivalently 0.75e < s < e/0.75.

If h satisfies (H1), then h is indecomposable and we apply Müller’s theorem (cf. Lemma 3).
Clearly, the sporadic cases are covered (by the condition δ ≥ 64). Thus let us now only look at
infinite families and assume that δ ≥ 64.

If we are in case (i) of Lemma 3, i.e. if we have G ⊇ Ad, then (h(Y )−h(x))/(Y −x) is absolutely
irreducible and thus we take it as the defining polynomial for y. We have δ = d− 1 and clearly
y 6= x, ηx−1, which implies (i) of Lemma 5. Here it follows, on using s = d − e > d − (s/0.75)
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and e = d− s > d− (e/0.75) (observe that we have deg q̃ = 0 and therefore there are no Puiseux
series of type 3. in Lemma 4), that there are at least

s >
d

2.34
≥ δ

62
Puiseux series at x = 0 of type 2. and at least

e− 1 >
d

2.34
− 1 ≥ δ

62
Puiseux series at x = 0 of type 1. in Lemma 4 in the factor defining y. Then the sought lower
bound for degK(z) follows by the same arguments as used in the proof of Lemma 5: Let z = xmyn

with m,n ∈ Z. If ||m|−|n|| ≥ (1/63)max{|m|, |n|}, then we are done by properties of the degree,
and if this is not the case, then it is enough to consider z = xmyn with m ∈ N, n ∈ Z and m ≥
(62/63)|n| > 0. Since we have already proved that there are ≥ (1/62)δ Puiseux series at x = 0 of
type 1. and 2. in Lemma 4, it follows that we get degK(z) ≥ (1/62)mδ ≥ (1/63)max{m, |n|}δ.
(This is obtained, as before, by counting the zeros of z by going through the zeros of x and using
that in both cases n ≥ 0 resp. n < 0 there are ≥ (1/62)δ places that contribute at least m to
the lower bound.) So we are done again.

Otherwise we are in case (ii) of Lemma 3. It follows that d = m2 with m ≥ 8 and G =
(Sm × Sm) ⋊ Z/(2). The orders of the distinct orbits induced by the action of G (that are the
degrees in Y of the irreducible factors of h(Y ) − h(x)) are (m − 1)2, 2m − 2 and 1. Let y be
defined by the factor corresponding to (m − 1)2. Clearly, (i) of Lemma 5 is satisfied. Since we
are assuming that 0.75e < s < e/0.75, which implies s > m2/2.34 and e > m2/2.34, similarly to
the above we get that there are at least

e− 2m+ 1 >
m2

2.34
− 2m+ 1 ≥ 1

62
(m− 1)2

Puiseux series at x = 0 of type 1. and at least

s− 2m+ 1 >
1

62
(m− 1)2

Puiseux series at x = 0 of type 2. in the defining equation of y (with δ = (m− 1)2). This again
implies the sought lower bound for degK(z).

Finally assume that h satisfies (H2), so h(x) = h̃(x + ηx−1), η ∈ k∗. After rescaling x we may

assume that η = 1, i.e. that h(x) = h̃(x + x−1). Observe that d = 2deg h̃; we set n := deg h̃ =
d/2 ≥ 32.

Since h is a Laurent-polynomial, it follows that h̃ ∈ k[x] (otherwise h would have a pole
outside {0,∞}) and since every decomposition h = p◦q has q(x) = λ(ax+bx−1) for a, b ∈ k, λ ∈
PGL2(k), it also follows that h̃ is indecomposable.

So we have (e.g. by [13, Theorem 10, p. 52]) three cases: Either h̃ is related to a cyclic or a
Chebyshev polynomial (i.e. h(x) = c1(x + x−1 + c2)

n + c3 or h(x) = c1Tn(c2(x + x−1) + c3) +

c4, c1, c2, c3, c4 ∈ k), or H(U, V ) := (h̃(U)− h̃(V ))/(U − V ) is absolutely irreducible.

In the first two cases H(U, V ) splits into factors of degree 1 or, by [13, Lemma 1, p. 52],
into factors of degree 2 and therefore δ ≤ 4. Thus we can forget about these cases since we are
assuming here that δ ≥ 64.

Hence, in the sequel we assume that we fall into the third case, i.e. that H is absolutely
irreducible. We now apply a result analogous to Müller’s quoted one, but for the simpler case of
polynomials (instead of Laurent-polynomials); it appears in Müller’s paper [11, Theorem 4.9, p.
63] (but is proved elsewhere). We may already forget about the sporadic cases and thus consider
only the infinite families (given at the beginning of the cited statement). The first cases (a), (b)
correspond to the cyclic and Chebyshev case (in fact now the Galois group structure says that
H is not absolutely irreducible). Hence these cases have already been taken into account.
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Therefore we concentrate on case (c), namely we assume that the Galois group G of the

equation h̃(U)− h̃ over k(h̃) is either An or Sn (remember that now n = deg h̃); recall moreover

that n ≥ 32. We denote by L the splitting field of this equation over k(h̃). We let u, v ∈ L be

distinct solutions to this equation, so u 6= v and h̃ = h̃(u) = h̃(v).

We have the field inclusions k(h̃) ⊆ k(u) ⊆ k(u, v) ⊆ L. The Galois group of L/k(u) corre-
sponds to the stabilizer in G of 1, say, whereas the Galois group of L/k(u, v) corresponds to the
stabilizer of both 1 and 2. These two subgroups in turn correspond to natural inclusions, either
An−2 ⊆ An−1 or Sn−2 ⊆ Sn−1 (depending on whether G is An or Sn).

Suppose now that there is a field F , quadratic over k(u) and with k(u) ⊆ F ⊆ k(u, v).
This would correspond to a group Γ of index 2 either in An−1 or in Sn−1, and with either
An−2 ⊆ Γ ⊆ An−1 or Sn−2 ⊆ Γ ⊆ Sn−1 in the respective situations for G. Say that G = An:
since n ≥ 32, An−1 is simple, so we cannot have [An−1 : Γ] = 2. Similarly if G = Sn: we would
have Γ = An−1, contrary to Sn−2 ⊆ Γ. We conclude that such a quadratic extension does not
exist.

Let us now define x as a solution of X+X−1 = u, in an algebraic closure of k(u) containing L;
so x+x−1 = u. The other solution is x−1, so k(x) is independent of the solution, and k(x)/k(u)
is quadratic. Hence, k(x) is not included in k(u, v), and therefore x has degree 2 over k(u, v).

Similarly, we may define y as a solution of Y + Y −1 = v in the same algebraic closure, and
then y has also degree 2 over k(u, v).

Note that h̃(u) = h(x), h̃(v) = h(y), and y is a conjugate of x over k(h).

Now, k(x, y) has either degree 4 or degree 2 over k(u, v). We get the tower of fields k(u) ⊆
k(x) ⊆ k(x, y) = K given by the defining equations x + x−1 = u and h(x) − h(y) = 0 with the
respective degrees [k(x) : k(u)] = 2, [K : k(x)] = δ = degK(x). Also we have k(u) ⊆ k(u, v) ⊆ K;
the first extension is given by H(u, v) = 0 and has therefore degree [k(u, v) : k(u)] equal to
n− 1 = d/2− 1 and the second is given by x+ x−1 = u, y + y−1 = v.

If [K : k(u, v)] = 4, then a comparison of the degree [K : k(u)] obtained from the two towers
gives δ = d− 2. Hence the numerator of

h(Y )− h(X)

(Y −X)(Y X − 1)

is absolutely irreducible and is therefore the only choice as defining polynomial for y. As before
we can use 0.75e < s < e/0.75, and the fact that there are s − 1 Puiseux series of type 2. and
e−1 Puiseux series of type 1. at x = 0 in this irreducible factor of h(X)−h(Y ) to get the sought
lower bound for degK(z).

We are left with the case when [K : k(u, v)] = 2, and we proceed to prove that this case cannot

occur at all. Note that k(x) = k(u,
√
u2 − 4) and k(y) = k(v,

√
v2 − 4). Hence, K = k(x, y) =

k(u, v)(
√
u2 − 4,

√
v2 − 4). Since none of the fields k(x), k(y) is included in k(u, v), we have that

none of u2 − 4, v2 − 4 is a square in k(u, v) but the ratio (v2 − 4)/(u2 − 4) is a square in k(u, v).
We distinguish between two further cases.

• Case: h̃(2) 6= h̃(−2).
Since (v2−4)/(u2−4) is a square in k(u, v), the function u−2 must have even order at

all the places of k(u, v) lying above the place u = 2 of k(u), except possibly for the places

with v = 2 (v = −2 does not lie above u = 2 because h̃(2) 6= h̃(−2)). Since H(U, V ) is
absolutely irreducible, the places of k(u, v) above u = 2 correspond to the Puiseux series

of h̃(Z) − h̃(u), as series Z = Z(u) centered at u = 2, where we disregard the ‘trivial’
series Z = u = 2 + (u− 2).

It is very easy to determine some features of these series: Let z = ξ be a root of
multiplicity µξ of the equation h̃(z) − h̃(2) = 0; then the ramification index at v = ξ
above u = 2 is µξ/ gcd(µξ, µ2) (see e.g. [8]). Since (v2 − 4)/(u2 − 4) has even order at
all places, this index has to be even for ξ 6= 2 (note that in the present case the value
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ξ = −2 does not appear). Hence in particular µξ is even for ξ 6= 2. Note that µ2 cannot

be even, for otherwise h̃(Z)− h̃(2) would be a square, and H(U, V ) would be reducible,
a contradiction. Similarly at u = −2. We deduce that

h̃(Z)− h̃(±2) = (Z ∓ 2)Q2
±(Z),

for a suitable Q± ∈ k[Z]. By [13, Lemma 4, p. 27] (applied with q1 = ξ1 = 2, q2 =

ξ2 = −2), we have h̃(Z) = ±Tn(Z) where Tn is the nth Chebyshev polynomial. But then
again H(U, V ) would be reducible, which is not the case.

• Case: h̃(2) = h̃(−2).
Now the same argument as above yields again that µξ is an even integer for ξ2 6= 4.

Also, putting µ2 = α+ρ, µ−2 = α−ρ, where ρ = gcd(µ2, µ−2), it is easy to see, on
looking at Puiseux series, that the ramification index of any place in k(u, v)/k(u) with
v = −2 above u = 2 is α−, and the order of (v2 − 4)/(u2 − 4) at such a place is
α−((µ2/µ−2) − 1) = α+ − α−. Hence the present assumption implies that α− and α+

are odd and µ2 − µ−2 is even.
Hence h̃(u) − h̃(2) = (u2 − 4)mR2(u) for a polynomial R ∈ k[u] and an integer

m ∈ {0, 1}, whence h(x) − h(1) = (x − x−1)2mR2(x + x−1) is a square Q2(x) in k(x).
This however contradicts condition (H2), because we would have the decomposition
h(x) = p(q(x)) with p(x) = x2 + h(1), q(x) = Q(x). (Note that degQ = deg h/2 ≥ 32.)

In conclusion, in the cases under consideration the degree [K : k(u, v)] cannot be 2 but must be
4, and we are done as remarked above.

After all of this work we have merely achieved (8); however with this tool we are ready to
give the proof of the statement in question. We study the equation f(x) − f(y) = 0 and take
the same partition coming from Σ = ΣL ∪ ΣS as before. Suppose that a vanishing minimal
subsum of f(x)− f(y) contains terms of type LL and LS, say xmyn and xm

′

yn
′

. Then the ratio

is z = xm−m′

yn−n′

, where |n− n′| > (2/3l)mℓ, and hence

degK(z) ≥ 2

63 · 3ℓmℓδ,

where we have used (8). So by Lemma 2 and by using 2g− 2 + |S| ≤ 2δ2 and the inequality (4)
we get

deg f ≤ mℓ ≤
63 · 3ℓ

2

(

ℓ2 − 2

2

)

2δ ≤ (2016 · 5ℓ)(d− 1),

and similarly if two of the four sets contain terms from some minimal subsum. Hence, we may
assume that each of the four sets is a union of vanishing subsums, so:

a(x)b(y) = a(y)b(x)

A(x)B(y) = A(y)B(x)

A(x)b(y) = B(x)a(y)

a(x)B(y) = b(x)A(y)

Suppose that some among a(x), A(x), b(x), B(x) vanish. We know A(x) 6= 0 (it contains the term
xmℓ with the maximal degree) and also a(x) 6= 0 (it contains the constant term). If b(x) = 0, we
have B(x)a(y) = A(x)b(y) = 0, so B(x) = 0 which is impossible. If B(x) = 0, then we similarly
conclude b(x) = 0, that is again impossible. So a(x)A(x)b(x)B(x) 6= 0. We find

a(x)

b(x)
=
a(y)

b(y)
=
A(x)

B(x)
=
A(y)

B(y)
= ϕ(h)

for some ϕ ∈ k(x). Thus a(x) = ϕ(h)b(x), A(x) = ϕ(h)B(x) and therefore a(x) + A(x) =
ϕ(h)(b(x) +B(x)) implying

f(x) =
a(x) +A(x)

b(x) +B(x)
= ϕ(h) =

a(x)

b(x)
.



24 C. FUCHS AND U. ZANNIER

By induction on ℓ we get that degϕ ≤ 2016 · 5ℓ−1 and thus deg f = degϕ · d ≤ (2016 · 5ℓ)(d− 1).
(The case ℓ = 2 again follows, e.g. on following the arguments made above and observing that
the last case is impossible since then Σ contains at least three elements.) Thus the statement is
proved. �

5.3. Proof of Theorem 3 in the case h(0) = 0. This last part of the proof proceeds exactly
like the one for the non-Laurent case in Subsection 4.2 above: We just have to observe that
h(x) = xep̃(x), where p̃ is a non-constant polynomial, not vanishing at 0. The arguments therein
do not require any modification. �

6. Proof of the Corollary

In this section we give the proof of the corollary. We argue similarly to [6, Lemma 2] or [18].

Suppose that one among q(x), h(q(x)), h(h(q(x))) is not of the forbidden shape (of the Main

Theorem). Then we may apply such theorem with h◦(n−i) in place of g (with suitable i ≤ 2) and
h◦i ◦ q in place of h. If h◦n(q(x)) = P (x)/Q(x), where P,Q are polynomials having altogether at
most ℓ terms, then the conclusion of the Main Theorem gives 2016 · 5ℓ ≥ deg g = (deg h)n−i =
dn−i ≥ dn−2, whence

ℓ ≥ 1

log 5
((n− 2) log d− log 2016),

proving the conclusion.
So let us assume that each among q(x), h(q(x)), h(h(q(x))) is of the forbidden shape, i.e.

λ(axn + bx−n), a, b ∈ k, n ∈ N, λ ∈ PGL2(k).

Take this expression for q(x) and assume first that ab 6= 0. On rescaling x, setting x in place
of a suitable power of it, and changing h with λ−1 ◦ h ◦ λ, we may write q(x) = x+ x−1. (Note
that these substitutions do not affect the conclusions.)

Then we have h(x+x−1) = λ1(a1x
r+b1x

−r) for a1, b1 ∈ k, λ1 ∈ PGL2(k) and some r > 0. Since
the left side is invariant under x 7→ x−1, we must have a1 = b1 6= 0, and then r = d = deg h.
Recall now that Td(x + x−1) = xd + x−d, for the Chebyshev polynomial Td of degree d, so
h(x) = λ1(a1Td(x)) = (λ∗1 ◦ Td)(x) for a λ∗1 ∈ PGL2(k).

Further, we have h(h(q(x))) = λ2(a2x
m+ b2x

−m) for a2, b2 ∈ k, λ2 ∈ PGL2(k),m ∈ N. Again,
a2 = b2, and d is a divisor of m: m = ld for a positive integer l. The above equation yields
h(λ∗1(Td)) = λ∗2(Tm) = λ∗2(Tld) = λ∗2(Tl(Td))), for suitable λ∗2 ∈ PGL2(k), where we have used
the composition property Trs = Tr ◦ Ts for positive integers r, s. Then h ◦ λ∗1 = λ∗2 ◦ Tl, whence
l = d and, on taking λ3 = (λ∗1)

−1 ◦ λ∗2 ∈ PGL2(k), we get

Td ◦ λ∗1 = λ3 ◦ Td.
Now, Td is a polynomial of degree d. Since d ≥ 3, ∞ is the unique totally ramified point of
the map x 7→ Td(x) and it follows that λ∗1, λ3 must fix ∞. We therefore invoke [13, Lemma 5,
p. 28] to conclude that λ∗1(x) = ±x, λ3(x) = (±1)dx. This implies λ∗2(x) = (±1)d+1x and also
h(x) = (±1)dTd(x).

Consider now the case when ab = 0 in the expression for q. Up to conjugation by an element in
PGL2(k) and on setting x in place of a suitable power of it we may now assume that q(x) = x.
Write then as above h(x) = λ1(a1x

d + b1x
−d) with (new) a1, b1 ∈ k and λ1 ∈ PGL2(k). If

a1b1 6= 0, the arguments are as before. Then assume a1b1 = 0, so h(x) = λ∗1(x
d) for a λ∗1 ∈

PGL2(k). Similarly to the case treated above, we obtain also λ∗1(x)
d = λ3(x

d), and the conclusion
easily follows. �

7. Appendix: Composite factors of binomials

We prove here that the question posed at the end of the introduction (see Remark 1.2(iii))
has an affirmative answer in the special case of binomials. To recall this, let us assume that a
binomial xm

′

(xm + a) with 0 ≤ m′ < m, m,m′ ∈ N, a ∈ k, is divisible by the composite g(h(x))
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of two polynomials g, h ∈ k[x], where as usual deg g, deg h ≥ 2 and h(x) is not of the shape
bxn + c, b, c ∈ k, n ∈ N. We thus have the equation

(9) xm
′

(xm + a) = q(x)g(h(x)), q(x) ∈ k[x].

We prove

Theorem 5. Equation (9) implies deg g ≤ 24.

Proof. If a = 0, then g(h(x)) is a power of x. Hence, for every root ξ of g we have h(x) − ξ =
bxd, where b and d are the leading coefficient and degree of h respectively. Hence, h is of the
exceptional shape. Let us then assume that a 6= 0. By rescaling we may further assume a = −1,
so the equation becomes

xm
′

(xm − 1) = q(x)g(h(x)).

We note at once that we may reduce to the case h 6∈ k[xs] for any s > 1. To prove this
reduction we argue by induction on deg h, similarly to what we did in connection with the
previous results. Assuming h(x) = h∗(xs) for a polynomial h∗ ∈ k[x], we write q(x) = q0(x

s) +

xq1(x
s) + . . . + xs−1qs−1(x

s) for polynomials q0, q1, . . . , qs−1 ∈ k[x]. Note that xm
′

(xm − 1) =
∑s−1

i=0 x
iqi(x

s)g(h∗(xs)), where all the terms in the summand indexed by i on the right have
degree ≡ i (mod s).

If m 6≡ 0 (mod s), then we conclude that xm
′

is of the shape xiqi(x
s)g(h(x)), so we fall in a

case just excluded in the opening argument. Therefore we have m ≡ 0 (mod s), and for some i,

xm
′

(xm−1) = xiqi(x
s)g(h(x)). Hence, x(m

′−i)/s(xm/s−1) = qi(x)g(h
∗(x)); this is an equation of

the same type as before, with the same g but lowered degrees. So eventually we reach a situation
when h 6∈ k(xs), for any s > 1, as we shall assume from now on.

For each root ξ of g we have that all the roots of h(x)− ξ are either 0 or roots of unity. Here 0
may appear at most for one ξ, and the other roots are simple. Also, for all ξ the set of non-zero
roots, say denoted by Sξ, is nonempty. We have the equation

h(θ)− h(ζ) = 0

for all θ, ζ ∈ Sξ.

Now, by a theorem of Beukers and Smyth [2] (see also [15] for the main argument of their
proof), the number of pairs (θ, ζ) of roots of unity which lie on an irreducible curve f(θ, ζ) = 0,

when f is not of the special shape bxnyn
′

+ c or bxn + cyn
′

, is bounded by 11(deg f)2.

Let us detect the special factors dividing h(x)− h(y). One factor is x− y. If another factor is

of the above shape, we have h(xn) = h(cxn
′

) for some constant c ∈ k∗ and coprime exponents
n, n′ ∈ Z. Necessarily n = n′, so we may assume h(x) = h(cx). Then c is a root of unity and
h(x) = h∗(xe) for h∗ ∈ k[x] and an e > 1, a case which has been excluded above.

So there are no other such special factors, whence

|{(θ, ζ) : θ 6= ζ, h(θ) = h(ζ), θ, ζ roots of unity}| ≤ 11(deg h)2.

Hence,
∑

g(ξ)=0

|Sξ|(|Sξ| − 1) ≤ 11(deg h)2.

On the other hand, since |Sξ| = deg h for all but possibly one ξ, in which case it is ≥ 1, we have
that

∑

g(ξ)=0

|Sξ| ≥ deg g deg h− deg h+ 1 = deg h(deg g − 1) + 1.

Using the Cauchy-Schwarz inequality we get

σ2 :=





∑

g(ξ)=0

|Sξ|





2

≤ deg g
∑

g(ξ)=0

|Sξ|2,
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and thus

11(deg h)2 ≥
∑

g(ξ)=0

|Sξ|(|Sξ| − 1) ≥ σ2

deg g
− σ = σ

(

σ

deg g
− 1

)

.

Furthermore, this implies

11(deg h)2 ≥ deg h(deg g − 1)

(

deg h(deg g − 1)

deg g
+

1

deg g
− 1

)

.

Dividing by (deg h)2 and using deg g, deg h ≥ 2, it follows

11 ≥ (deg g − 1)

(

deg g − 1

deg g
− 1

deg h
+

1

deg hdeg g

)

≥ (deg g − 1)2

2 deg g
≥ deg g

2
− 1,

and finally deg g ≤ 24. �

Remark 7.1 We remark that there are certainly non-trivial (that is, with deg g > 1) solutions to (9).
For instance, observe that

xn(n−1)+1 − x = (x− 1)2h(x)(h(x)− 1) = (x− 1)2g(h(x)),

with

h(x) =
xn − 1

x− 1
, g(x) = x(x− 1).

This provides an example with deg g = 2.
Most probably however, the estimate deg g ≤ 24 may be sharpened, possibly to deg g ≤ 2, which would

then be best-possible. It is also possible that there are no solutions in which deg g ≥ 2 and m′ = 0.
These questions amount to certain systems of equations to be solved in roots of unity. We plan to

return to them in a future paper.

On the other hand, the general question of divisibility of an ℓ-nomial by a composite factor g(h(x))

appears to be difficult and not in the range of the methods of the present paper.
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