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Abstract. In this paper we study composite rational functions which
have at most a given number of distinct zeros and poles. A complete
algorithmic characterization of all such functions and decompositions is
given. This can be seen as a multiplicative analog of a result due to
Zannier on polynomials that are lacunary in the sense that they have a
bounded number of non-constant terms.

1. Introduction and results

Let k be an algebraically closed field of characteristic zero and let k(x)
be the rational function field in one variable over k; for f ∈ k(x) we define
deg f = [k(x) : k(f(x))]. We are interested in rational functions f ∈ k(x)
that are decomposable as rational functions, i.e. for which a relation of the
form f(x) = g(h(x)) with g, h ∈ k(x), deg g, deg h ≥ 2 holds. Observe that
such a decomposition is only unique up to a linear fractional transformation
λ ∈ PGL2(k) = Aut(P1(k)) since we may always replace g(x) by g(λ(x))
and h(x) by λ−1(h(x)) without affecting the equation f(x) = g(h(x)).
Especially we are interested in such decompositions when f is a “lacunary”
rational function.

There are different possible notions of “lacunarity”. One way to define
it, is to think of the number of terms appearing in a given representation
of f(x) = P (x)/Q(x), P,Q ∈ k[x] to be bounded. It was proved by Zannier
in [8] that if one starts with a positive integer l, then one can describe
effectively all decompositions of polynomials f ∈ k[x] having at most
l non-constant terms if one excludes the inner function h being of the
exceptional shape axn + b, a, b ∈ k, n ∈ N. Observe that for polynomials
it is natural just to consider the non-constant terms since one can always
replace f by f−f(0) which has the same the degree as f and is composite if
and only if f is. We also remark that it is enough to consider g, h ∈ k[x] in
this case and it is not hard to see that the exception is really needed. This
description was “algorithmic” in the sense that all possible polynomials

Key words and phrases. Rational functions, decomposability, lacunarity, Siegel’s identity,
Mason-Stothers inequality, Brownawell-Masser inequality
2010 Mathematics Subject Classification. 11R58, 14H05, 12Y05.
‡Research of the second author was supported in part by the Hungarian National Foun-
dation for Scientific Research grant No.T67580.

1



2 C. FUCHS AND A. PETHŐ

and decompositions were described by letting the possible coefficients vary
in some effectively computable affine algebraic varieties and the exponents
in some computable integer lattices. This gave a complete proof of a
conjecture of Schinzel (saying that if for fixed g the polynomial g(h(x)) has
at most l non-constant terms, then the number of terms of h is bounded
only in terms of l) and more. The proof used as a first step an upper bound
for the degree of g given only in terms of l that was already obtained
by Zannier in [7]. (We remark that this last result was later generalized
to Laurent-polynomials in [9] and then to rational functions in [3].) The
further proof was a complicated inductive argument that used in its core
an effective bound for the degrees of the solutions of S-unit equations (over
function fields) in several variables due to Brownawell and Masser [1]; in
fact a variant of it by Zannier [6] was used.

There are also other possibilities to think of the “lacunarity”. In this
paper we will be interested in rational functions f with a bounded number
of zeros and poles (i.e. the number of distinct roots of P,Q in a reduced
expression of f is bounded). As above we think of the number of zeros and
poles as being fixed, whereas the actual values of the zeros and poles and
their multiplicities are considered as variables. We also shall give a complete
description of composite f ’s in analogy to Zannier’s result in [6]; the proof
of our result contains an algorithm that for given n provides all the data
for rational functions f, g, h with f having at most n zeros and poles such
that f(x) = g(h(x)) holds. We remark that a related type of question came
up in [2] (see Proposition 2.4 therein).

Let us mention that we may assume (by changing g(x) into g(θx)) that
the rational function h is the quotient of two monic polynomials and by
dividing both sides of the equation f(x) = g(h(x)) by a suitable constant we
may even assume the same for f and g. (This is just to make the description
below more readable). There are many trivial such families e.g. if the
multiplicities of the zeros and poles of f all have a common divisor, say
m ∈ N, then f(x) = (h(x))m for some h ∈ k(x); for this reason we say that
if g(x) = (λ(x))m for a suitable λ ∈ PGL2(k), then g is of exceptional shape
(this has to be compared with the exceptional shape for h in the case above).
We give a second example: Let λ1, λ2 be the roots of x2 − x − 1 in k = C

(so λ1 is the golden mean), then for g(x) = xk1(x− 1)k2 , h(x) = x(x− 1) we
have f(x) = g(h(x)) = xk1(x− 1)k1(x−λ1)

k2(x−λ2)
k2 for every k1, k2 ∈ Z.

Thus we have constructed infinitely many rational functions f with four
distinct zeros and poles altogether and which are decomposable.

The general situation is given in the following theorem, which is the main
result of this paper:
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Main Theorem. Let n be a positive integer. Then there exists a positive

integer J and, for every i ∈ {1, . . . , J}, an affine algebraic variety Vi defined

over Q and with Vi ⊂ An+ti for some 2 ≤ ti ≤ n, such that:

(i) If f, g, h ∈ k(x) with f(x) = g(h(x)) and with deg g, deg h ≥ 2, g not

of the shape (λ(x))m,m ∈ N, λ ∈ PGL2(k), and f has at most n zeros

and poles altogether, then there exists for some i ∈ {1, . . . , J} a point

P = (α1, . . . , αn, β1, . . . , βti) ∈ Vi(k), a vector (k1, . . . , kti) ∈ Zti

with k1 + k2 + . . . + kti = 0 or not depending on Vi, a partition of

{1, . . . , n} in ti + 1 disjoint sets S∞, Sβ1
, . . . , Sβti

with S∞ = ∅ if

k1 + k2 + · · ·+ kti = 0, and a vector (l1, . . . , ln) ∈ {0, 1, . . . , n− 1}n,
also both depending only on Vi, such that

f(x) =

ti
∏

j=1

(wj/w∞)kj , g(x) =

ti
∏

j=1

(x− βj)
kj ,

and

h(x) =

{

βj +
wj

w∞
(j = 1, . . . , ti), if k1 + k2 + · · ·+ kti 6= 0,

βj1
wj2

−βj2
wj1

wj2
−wj1

(1 ≤ j1 < j2 ≤ ti), otherwise,

where

wj =
∏

m∈Sβj

(x− αm)lm , j = 1, . . . , ti

and

w∞ =
∏

m∈S∞

(x− αm)lm .

Moreover, we have deg h ≤ (n− 1)/max{ti − 2, 1} ≤ n− 1.
(ii) Conversely for given data P ∈ Vi(k), (k1, . . . , kti), S∞, Sβ1

, . . . , Sβti
,

(l1, . . . , ln) as described in (i) one defines by the same equations ra-

tional functions f, g, h with f having at most n zeros and poles alto-

gether for which f(x) = g(h(x)) holds.
(iii) The integer J and equations defining the varieties Vi are effectively

computable only in terms of n.

The example above is obtained by taking n = 4, t = 2, S∞ =
∅, S0 = {1, 2}, Sβ = {3, 4}, l1 = l2 = l3 = l4 = 1 and
P = (0, 1, λ1, λ2, 1) = (α1, α2, α3, α4, β) ∈ V(C), where the variety
V ⊂ A5 is defined as the zero locus of the system of algebraic equations
α1α2 − α3α4 − β = 0, α1 + α2 − α3 − α4 = 0.

We mention that for g(x) = g1(x)/g2(x), g1, g2 ∈ k[x] coprime and
deg g1 = deg g2, then every pole of h will be cancelled in the decomposition
f(x) = g(h(x)) and so a priori h could have arbitrary poles; this explains
the difference between the two cases. We also mention that if additionally
the number of distinct zeros and poles of g is two, then g has exactly one
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zero and one pole both with the same multiplicity and then we are in the
forbidden shape for g.

The theorem can be seen as a multiplicative analog compared to the
question studied by Zannier in the case that the number of non-constant
terms is fixed. This already suggests that the proof is much easier. The
essential part of it is to show that the inner function h has its degree
bounded only in terms of n; for this we use a reduction to a system of
two-dimensional S-unit equations, now over the rational function field, to
which variants of the Brownawell-Masser inequality can be applied.

Before we state these crucial results (namely Zannier’s variant from [6]
and the Mason and Stothers theorem [4]), we briefly recall the theory of
valuations on k(x) (see [5]). For every θ ∈ k there is a valuation defined by
the order of vanishing of f at x = θ; moreover, for f(x) = P (x)/Q(x), P,Q ∈
k[x] a non-archimedean valuation is defined by v∞(f) = degQ − degP . In
this way all valuations M of k(x) are obtained. Then we have

deg f =
∑

v∈M

max{0, v(f)} = −
∑

v∈M

min{0, v(f)};

in other words the degree is just the number of zeros respectively poles
of f (in P1(k)) counted by their multiplicities. The Mason-Stothers the-
orem now says that for every f, g ∈ k(x), not both constant, we have

max{deg f, deg g} ≤ |S| − 2, where S is any set of valuations of k(x) con-

taining all the zeros and poles in P1(k) of f and g. (We remark that the
upper bound is best possible). More generally by Zannier’s variant of the
Brownawell-Masser inequality, if g1, . . . , gm ∈ k(x) span a k-vector space of

dimension µ < m and any µ of the gi are linearly independent over k, then

−
∑

v∈M

min{v(g1), . . . , v(gm)} ≤
1

m− µ

(

µ

2

)

(|S| − 2),

where S is any set of valuations of k(x) containing all the zeros and poles

in P1(k) of g1, . . . , gm. (This is [6, Theorem 2].) Now we are ready to give
the proof of the theorem; this will be done in the next section.

2. Proof of the Main Theorem

Let n be a positive integer. We start with (i), so let f, g, h ∈
k(x), deg g, deg h ≥ 2, g not of the exceptional shape (λ(x))m,m ∈ N, λ ∈
PGL2(k) and with f having at most n zeros and poles in A1(k) altogether
and such that f(x) = g(h(x)). Since k is algebraically closed we can write

f(x) =
n
∏

i=1

(x− αi)
fi

with pairwise distinct αi ∈ k and fi ∈ Z for i = 1, . . . , n. (Remember that
without loss of generality we are assuming that f is monic.) Similarly we
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get

(1) g(x) =

t
∏

j=1

(x− βj)
kj

with pairwise distinct βj ∈ k and kj ∈ Z for j = 1, . . . , t and t ∈ N. Thus
we have

n
∏

i=1

(x− αi)
fi = f(x) = g(h(x)) =

t
∏

j=1

(h(x)− βj)
kj .

We now distinguish two cases depending on k1 + k2 + · · · + kt 6= 0 or not;
observe that this condition is equivalent to v∞(g) 6= 0 or not. We shall write
h(x) = p(x)/q(x) with p, q ∈ k[x], p, q coprime.

First assume that v∞(g) 6= 0. It follows that the poles in A1(k) of h
are among the values αi: This is true because q(θ) = 0 for θ ∈ k implies
h(θ) = ∞, where ∞ = (0 : 1) is the unique point at infinity of P1(k), and
h(θ)− βj = ∞. Also the valuation vθ of h and h(x)− βj is the same. Thus
vθ(f) = v∞(g)vθ(h) 6= 0, i.e. g(h(θ)) ∈ {0,∞}, and hence θ = αi for some
i ∈ {1, . . . , n}. This implies that there is a subset S∞ of the set {1, . . . , n}
such that the αm for m ∈ S∞ are precisely the poles in A1(k) of h, i.e.

q(x) =
∏

m∈S∞

(x− αm)lm

for some lm ∈ N. Furthermore h and every function h(x)−βi have exactly the
same poles in P1(k) and again at a pole the multiplicities are equal; especially
this implies that h and h(x) − βj have the same number of poles counted
by multiplicity, which means that their degrees are equal. Calculating the
valuations vαm of both sides of the equation f(x) = g(h(x)) we infer that
(k1 + k2 + · · ·+ kt)lm = v∞(g)vαm(h) = vαm(f) = fm for m ∈ S∞. We also
point out that for βi 6= βj the factors h(x)−βi and h(x)−βj do not have any
zeros (in A1(k)) in common; therefore we have t ≤ n. Now it follows that
there is a partition of the set {1, . . . , n}\S∞ in t disjoint subsets Sβ1

, . . . , Sβt

such that

(2) h(x) = βj +
1

q(x)

∏

m∈Sβj

(x− αm)lm ,

where lm ∈ N satisfies lmkj = fm for m ∈ Sβj
, and this holds true for every

j = 1, . . . , t. Since we assume that g is not of the shape (λ(x))m it follows
that t ≥ 2. Let 1 ≤ i < j ≤ t be given. We have at least two different
representations of h and thus we get

βi +
1

q(x)

∏

r∈Sβi

(x− αr)
lr = βj +

1

q(x)

∏

s∈Sβj

(x− αs)
ls
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or equivalently β(ui − uj) = 1, where β = 1/(βj − βi) and

ui =
1

q(x)

∏

r∈Sβi

(x− αr)
lr =

wi

w∞

,

where for the last equality we have used the definition from the theorem; this
is a non-constant rational function in k(x) (otherwise h would be constant,
but deg h ≥ 2 by assumption). Actually, the ui are S-units (and the same
is true for f) for the set of valuations S = {vα1

, . . . , vαn , v∞} ⊂ M corre-
sponding to α1, . . . , αn ∈ k and ∞ (recall that u ∈ k(x) is called an S-unit
if v(u) = 0 for all v /∈ S). In fact ui and uj have also no zeros in A1(k) in
common and they have all exactly the same poles (also with multiplicities),
namely αm,m ∈ S∞ and possibly ∞. The Mason-Stothers theorem implies
that

(3) lm ≤ n− 1 for all m = 1, . . . , n.

Observe that an application to β(ui−uj) = 1 gives the bound only for those
m which are in S∞∪Sβi

∪Sβj
; by using the relations from (2) for all possible

combinations of 1 ≤ i < j ≤ t we see that indeed (3) holds. More precisely,
it follows that L+, the sum over all lm,m ∈ Sβi

plus max{0, v∞(ui)}, and
L−, the sum over all lm,m ∈ S∞ plus −min{0, v∞(ui)}, is bounded by
n− 1. This can be immediately improved by an application of [6, Theorem
2]: First let us define ut+1 := 1. The k-vector space generated by the S-units
u1, . . . , ut, ut+1 ∈ k(x) has dimension 2 and any two of the ui are linearly
independent, because αui + βuj = 0 with α, β ∈ k implies either ui ∈ k, a
contradiction, or αui + β(ui − βj + βi) = (α + β)ui + β(βi − βj) = 0 and
thus α = β = 0. It follows that

deg ui = L+ = L− ≤ −
∑

v∈M

min{v(u1), . . . , v(ut), 0} ≤
n− 1

t− 1
≤ n− 1

for all i = 1, . . . , t. Especially, the degree of h is therefore also bounded by
n − 1 since it is equal to the degree of ui for all i = 1, . . . , t, so altogether
deg h = deg ui ≤ (n − 1)/(t − 1) ≤ n − 1. By comparing coefficients in
(2) after cancelling denominators for all combinations of the equations that
have to hold there, we get an affine algebraic variety V (possibly reducible)
defined over Q in the variables α1, . . . , αn, β1, . . . , βt; thus V ⊂ An+t. We
point out that the number of variables and the exponents depend only on
n. Since f(x) = g(h(x)) is given at this point, there are k-rational points on
this algebraic variety and one of them corresponds to (α1, . . . , αn, β1, . . . , βt)
coming from f and g.

Now we turn to the case v∞(g) = 0. Here we have

n
∏

i=1

(x− αi)
fi =

t
∏

j=1

(

p(x)

q(x)
− βj

)kj

=
t
∏

j=1

(p(x)− βjq(x))
kj .

Observe that a priori we have no control on the poles of h. However, as the
factors on the right hand side of the last equation are again pairwise coprime,
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there is a partition of the set {1, . . . , n} in t disjoint subsets Sβ1
, . . . , Sβt

such
that

(p(x)− βjq(x))
kj =

∏

m∈Sβj

(x− αm)fm .

Thus kj divides fm for all m ∈ Sβj
and this is true for all j = 1, . . . , t. On

putting lm = fm/kj for m ∈ Sβj
we obtain

(4) p(x)− βjq(x) =
∏

m∈Sβj

(x− αm)lm

for j = 1, . . . , t. Note that the exponents lm ∈ N, because p(x)− βjq(x) are
polynomials and the αm’s are distinct. We have already pointed out above
that in this case we may assume that t ≥ 3, since g is not of exceptional
shape. Let us choose 1 ≤ j1 < j2 < j3 ≤ t. From the corresponding three
equations in (4) the so called Siegel identity vj1,j2,j3 + vj3,j1,j2 + vj2,j3,j1 = 0
follows, where

vj1,j2,j3 = (βj1 − βj2)
∏

m∈Sβj3

(x− αm)lm .

The quantities vj1,j2,j3 are non-constant rational functions and they are S-
units. Observe that by taking j1 = 1, j2 = i, j4 = j with 1 ≤ i < j ≤ t the
Siegel identity can be rewritten as

βj − β1
βj − βi

wi

w1

+
β1 − βi
βj − βi

wj

w1

= 1,

where we are using the definition of the wi from the theorem. Moreover, we
get from (4) that

p(x) =
1

βi − βj



βi
∏

m∈Sβj

(x− αm)lm − βj
∏

m∈Sβi

(x− αm)lm





=
βiwj − βjwi

βi − βj
(5)

and

(6) q(x) =
1

βi − βj





∏

m∈Sβj

(x− αm)lm −
∏

m∈Sβi

(x− αm)lm



 =
wj − wi

βi − βj
.

Hence, the numerator of h is in any case given by f, g and the integer vector
(l1, . . . , ln). The Mason-Stothers theorem applied to the Siegel identity now
implies that lm ≤ n − 1 for m ∈ Sβ1

∪ Sβi
∪ Sβj

; as we may choose e.g.
i = 2 and j = 3, . . . , t we have actually lm ≤ n − 1 for m ∈ {1, . . . , n}.
More precisely it follows for every i that the sum over all lm with m ∈ Sβi

is
bounded by n−1, hence by (5) and (6) it follows that the degrees of p, q and
hence, since the degree of a rational function is the maximum of the degrees
of the numerator and denominator in a reduced representation, the degree
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of h is bounded by n− 1. Again this can be improved: We take wt+1 := w1.
Then the S-units w2/w1, . . . , wt/w1, wt+1/w1 = 1 span a k-vector space
of dimension 2 and any two are linearly independent, because the wi are
pairwise coprime polynomials and a constant quotient wi/w1 would imply
that h is constant, a contradiction, and if αwi/w1 + βwj/w1 = 0 for 1 ≤
i < j ≤ t, then (α− β(βj − β1)/(β1 − βi))wi/w1 + β(βj − βi)/(β1 − βi) = 0
and therefore β(βj − βi) = 0 which implies β = α = 0. Thus [6, Theorem 2]
gives that degwi/w1 ≤ (n − 1)/(t − 2) and, again since the wi are coprime
polynomials, degwi ≤ (n − 1)/(t − 2) for all i = 1, . . . , t. The definition of
h now implies that deg h ≤ (n − 1)/(t − 2) ≤ n − 1. By taking the Siegel
identities as defining equations we again get an algebraic variety V ⊂ An+t

and (α1, . . . , αn, β1, . . . , βt) is a k-rational point on this variety.
Finally we point out that we have h(x) = βj + wj/w∞ if v∞(g) 6= 0 and

S∞ = ∅ and h(x) = (βiwj − βjwi)/(wj − wi) otherwise. In conclusion we
have now proved (i).

Now we come to (ii) and (iii). The point is that we get all possible decom-
positions of rational functions with at most n zeros and poles altogether by
considering for every integer 2 ≤ t ≤ n and for every partition of {1, . . . , n}
into t+1 disjoint sets S∞, Sβ1

, . . . , Sβt
(observe that their number is bounded

only in terms of n) and for every choice of (l1, . . . , ln) ∈ {0, 1, . . . , n − 1}n

(here we use the crucial bound obtained in both cases; see e.g. (3)) the
variety defined by equating the coefficients given by (2) after cancelling de-
nominators and, if S∞ = ∅ and t ≥ 3, the variety given by the various Siegel
identities. If the first system has a k-rational solution, then (2) defines the
rational function h(x); afterwards for any choice of integers k1, . . . , kt with
k1 + . . . + kt 6= 0 we define a rational function g(x) by (1). If the second
system has a k-rational solution, then we define h(x) = p(x)/q(x) by (5)
and (6) and then for any choice of integers k1, . . . , kt with k1 + · · ·+ kt = 0
we define a rational function g(x) again by (1). Finally, in both cases, we
use

f(x) =

t
∏

j=1

(

∏

m∈Sβj

(x− αm)lm
∏

m∈S∞

(x− αm)−lm

)kj

=

t
∏

j=1

(wj/w∞)kj

to define the rational function f , which then has at most n zeros and poles
altogether and for which f(x) = g(h(x)) holds. The number J of possi-
ble varieties is at most 2np(n)nn, where p(n) is the partition function and
since everything above is completely explicit, the defining equations of the
varieties can be found explicitly. This proves the remaining parts of the
statement. �
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