POLYNOMIAL-EXPONENTIAL EQUATIONS INVOLVING
SEVERAL LINEAR RECURRENCES

CLEMENS FUCHS* AND AMEDEO SCREMIN?

ABSTRACT. Let £4 denote the ring of complex functions on N of the
form
Gn = c1al +c2ay + -+ + cray,
for some ¢; € C and a; € A, where A C C is multiplicative semigroup.
Moreover, let F(n,y) € Ealy]. We consider polynomial-exponential Dio-
phantine equations of the form
F(n,y) =GPy + Gy + ...+ G Vy+ G =

and show that this equation has only finitely many solutions under cer-
tain conditions. This generalizes earlier results due to Corvaja and Zan-
nier (cf. [4], [6]) on such equations.
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1. INTRODUCTION

Let Aj, Ag,...,A; and Gy, G1,...,GE_1 be integers and let (G,,) be a
k-th order linear recurring sequence given by

(1) G,=A1Gp1+---+AG,_ for n=kk+1,....

Let a1,as,...,a; be the distinct roots of the corresponding characteristic
polynomial

(2) Xk—Aleil—---—Ak.

Then for n > 0

3) Gn = Pi(n)af + Pa(n)ay + -+ + Pi(n)of,

where Pj(n) is a polynomial with degree less than the multiplicity of «;; the
coefficients of P;(n) are elements of the field: Q(a, ..., a).

We shall be interested in linear recurring sequences (G,,), where all roots
of the characteristic polynomial of (G,) are simple, which means that

(4) Gn = c1af +cpay + - + ey,
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for some ¢;,a; € C. If we restrict the roots to come from a multiplicative
semigroup A C C, then we let £4 denote the ring of complex functions on
N of the form (4) where a; € A. If K C C is a field we define K€4 by the
same formulas, but allowing ¢; € K.

Below, A will be usually Z; moreover in that case we define by 52' the
subring formed by those functions having only positive roots, i.e. by the
semigroup N. Working in this domain causes no loss of generality: this
assumption may be achieved by writing n = 2m + r and considering the
cases r = 0, 1 separately.

The recurring sequence (G)) is called nondegenerate, if no quotient
a;/aj for 1 <14 < j <tis equal to a root of unity. Observe that restricting
to nondegenerate recurring sequences causes no substantial loss of generality.

In the present paper we deal with Diophantine equations, where linear
recurring sequences are involved. Such equations were earlier investigated
by several authors, e.g. in the special case

(5) Gn = Ex?, E € Z\{0}.

A survey about this equation can be found in [13, 14] and in more general
form in [8, 10].

The first results have been proved just by using elementary and algebraic
tools. Later, the results were obtained with the applications of lower bounds
for linear forms in logarithms of algebraic numbers.

In 1998, a new development was started by Corvaja and Zannier [4]. They
considered linear recurrences defined by

Gp =c1a] + oy + -+ + o,

where t > 2,¢1,co,...,c; are non-zero rational numbers, a; > ag > -+ >
a; > 0 are integers. They used Schmidt’s Subspace Theorem [16], [17] to
show that for every integer ¢ > 2 the equation

(6) G, =1t

has only finitely many solutions (n,z) € N? assuming that G, is not
identically a perfect gth power for all n in a suitable arithmetic progression.
Tichy and the first author [10] gave a quantitative version of the above
result of Corvaja and Zannier by using a quantitative version of the
Subspace Theorem due to Evertse [7].

Recently, Corvaja and Zannier [6] generalized their result. Let K be an
algebraic number field and let (G,) be a nondegenerate linear recurring
sequence defined by (4) where ¢ > 2, ¢; are non-zero elements of K for all
i=2,...,t and where a1,..., o are elements of K with 1 # |a1| > |a;| for
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all j =2,...,t. Let f(z,2) € K[z,z] be monic in z and suppose that there
do not exist non-zero algebraic numbers d;, 8; for j =1,...,k such that

k
(7) f<GmZdjﬁ?> =0

for all n in an arithmetic progression. Then the number of solutions (n,z) €
N x K of the equation

f(Gp,z) =0
is finite. The first author [8] gave a quantitative version of this result, which

is a little bit more general in the assumptions.

The aim of the present paper is the generalization of the above result to
a Diophantine equation where more than one linear recurring sequence is
involved. Let f(z1,...,z4,y) € Q[z1,...,24,y] (where Q denotes the alge-

braic closure of Q) and let G,(ll), ceey Gsld) € @E% , then we want to consider
the Diophantine equation

FIGY,...,GlD y) =0.

This is equivalent to saying that we consider equations of the form

(8) GOyt ¢+ Gy 4 G =,
where G%O), ey G%d) € @8%’ , 1.e. to consider polynomials in y with coeffi-

cients in the ring @5%’.
Let us mention that similar types of equations, namely

f(x7 y’ aw) = 0 and f(a’" y7 aﬁ’ﬁy) = 0’

where f is a polynomial with complex coefficients and «, 8 are non-zero
complex numbers, were studied by Schmidt [18] and Ahlgren [1, 2]. They
showed that this equations can have solutions with arbitrarily large values
of |z| only in the case when f and «, 3 are of a particularly simple form.

The second author [20] showed another result which is related to what
we consider here. Let f(z,y) € Q[zr,y] be monic in y, absolutely irreducible
and of degree d > 2 in y; let g(n) € Z[z] be a non constant polynomial; let
G, € @EZ not constant. Then the equation

f(Gn,y) = g(n)

has only finitely many solutions (n,y) € N x Z.
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2. RESULTS

In this section we will state our general results. First we need some nota-
tion. Let d > 2 be an integer and let G(O) . G,(ld) € @5%, i.e. we have

GO — o®a®" 1 g@a®" 4 4 o 0@

+0)%4(0) >
G%d) _ agd)ag " a(d) ( " ,523)04,52)",

where az(j) >
agj) > > a(()) foralli=1,...t9) and j = 0,...,d. Now we consider the
Diophantme equation

GOy .. + G Vy+ G =o.

Let f(zo,...,%q,y) = Zoy® + ... + 24 1y + x4 be fixed for the rest of the
paper. So the above equation becomes

FGO,...,G9 y) =0.

n

(4) (4)

are algebraic and «;”’ are positive integers such that o

We will show how to this equation another equation in some normal form
can be associated. First, we set (for a positive real determination of the

roots)
1 (d-1)\ =1 (d=2)\ 725 (1)
a::max{agd)d,(al—l) 1’(051 2) Za-"a ald—l}
O3 ) TNGE) T

o
agi) i
= max — | -
i=1,...,d (0) @
@y
Moreover, let
a’l’l
v= agoﬁ %
Then consider
(9) Lo, . g0 )
adn noo »Mn aa(o)%
1

This is a polynomial in z with coefficients in Q€4, where A is the multi-
plicative group generated by

1

o, a§°)3 and the roots of G0, ... G

i.e. the coefficients of this polynomial are again power sums. Observe that
all the roots which appear in these power sums are < 1, because of our
construction and that one of the roots which appear as coefficient of z%

1 (this will be proved in Lemma 2 below). Let 71,...,7, denote the dif-
ferent roots of these power sums (the coefficients of (9) as a polynomial
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in z), which are strictly less than 1. We identify the expressions ! in (9)
by a new variable ;. Therefore we get a polynomial (linear in z1,...,z,)
gf(z1,-..,2r,2) € Qz1,-.., 2, 2] such that

1 a™
gf(’}’{l,,’)’;Z,Z):Wf(G%O),,G,ELd), ﬂz>'
o (0)d
aq
This polynomial is some kind of normal form for our equation under
consideration. We denote by Dy, ,(z1,...,;) the discriminant of g with

respect to z and we set Dy, , 1= Dgf,z(O, ...,0).

We are now in the position to formulate our main result. Our aim is to
prove that the equation has only finitely many solutions in integers, apart
from “trivial” cases which can be classified. We achieve this goal under a
suitable technical hypothesis in the Main Theorem below.

Theorem 1. Let d > 2 and let G%O), . G%d) € @82. Assume that

(10) Dy, .. # 0.
Then there exist finitely many recurrences H,(ll), N 7({9) with algebraic coef-
ficients and algebraic roots, arithmetic progressions P1,...,Ps, and a finite

set N of integers, such that for the set S of solutions (n,y) € N X Z of the
equation

FGP,. G0,y =GPy + .+ Gy + G =0

we have
S = U{(n,H,(f)) :ne€PitU{(n,y) :neN,yeZ}UM,
=1
where M is a finite set.

Remark 1. In contrast to [6, 8], where Puiseux series are used, the main
tool in our proof is the fact that we can use some suitable version of
the Implicit Function Theorem to express z in gy as a power sum of the
other variables which converges locally around the origin. In the version
of Puiseux’s theorem for several variables (cf. [3]) known to the authors, a
similar condition to (10) appears, namely that the discriminant does not
vanish in a certain region.

Remark 2. As we use the Implicit Function Theorem as our driving tool,
it is clear that condition (10) is equivalent to

(10) <= g¢(0,...,0, 2) has only simple roots <=

99

<:>az

0,...,0,2) #0, i=1,....d,
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where z; are the roots of gf(0,...,0,2). Note that a similar condition
already appeared in the main result in [5].

Let us point out what the construction of o means for the equation
Gnp =a10] + ...+ aa} =y
We get

gr(®1,.- .., @1, 2) = 2% — (a1 +agz1 + ... + ax4—1),

o o \_,
gf a—?,...,a—?,z = V.

such that

Observe that condition (10) is satisfied and therefore we get once again the
result of Corvaja and Zannier [4]. In fact the construction is exactly the
same as the idea of their proof.

Remark 3. Note that the progressions can be chosen in such a way that
along the progression P; we have

HY e&f.
We will show this at the end of the proof of Theorem 1.

Remark 4. Observe that the first type of infinite families of solutions may
appear. For example the equation

y (2" 43"y +6" =0
has solutions (n, —2") and (n,—3") for all n € N. Moreover, observe that
gf(z1,m2,2) = 2%+ (1 + 21)2 + 21

and therefore
D, e = 1#0.

These solutions are “trivial” infinite families of solutions in the sense that
the equation has already solutions in the ring of power sums (cf. also the
result due to Corvaja and Zannier [4, 6]).

Remark 5. In fact it is easy to decide whether such infinite families of
solutions appear or not. This follows from the fact that the ring €4, where
A is the multiplicative group generated by the roots of a recurrence G,,, is
easily understood. It is well known (see [15]) that this ring is isomorphic to
the ring

cty,..., Ty, T7 .. T

if A has rank £ > 1 and has no torsion. We simply choose a basis 71, ..., v
of A and associate the variable T; to the function n — ~.
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Remark 6. It is easy to see that some further infinite families can appear.
For example consider the equation
(2" - 2)y* +3" -3 = 0.

Obviously, this equation has infinitely many solutions, namely (1,y) with
y € Z arbitrary. We have

gr(z1,20,2) = (1 — 2;1:1)22 + 1 — 3z,

therefore Dy, ., = —4 # 0. Let us notice that the assumption that the
polynomial f is monic excludes the existence of “trivial” families of solutions
of this type.

We state some corollaries, which follow from the proof of our main theo-
rem.

Corollary 1. Let d > 2 and let Gg), e ,G%d) € @8%. Assume that there
does not exist H,, € QE@ such that
H+GVHS + ...+ 6@ =0

for all n in a certain arithmetic progression. Moreover, assume that
(11) agd_l) > agj)d_l forallj=0,...,d—2,d.
Then the Diophantine equation

Y+ GOyt 4 LGy 4 G —
has only finitely many solutions (n,y) € N X Z.

The next corollaries handle equations of the form under consideration of
degree 3.

Corollary 2. Let G%l), Gg) € @5%’. Assume that there does not exist H, €
@5@ such that
H3+GVH, + G2 =0
for all n in a certain arithmetic progression. Moreover, assume that
()" # (of)” or 4(af”)’ + 27(af?)” £ 0.
Then the equation
v+ Gy + G2 =0
has only finitely many solutions (n,y) € N x Z.
Corollary 3. Let 0 # a,b € Q and a, B positive integers. Then the equation
y® + aay + 8" =0
has for
a® # B2 only finitely many solutions (n,y) € N x Z, and for
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a® = 82 the set of solutions (n,y) € Nx Z is contained in the following
set consisting of infinite families

{(n,cﬁ%) :neN, ¢ +ac+b=0}.

Although we work only in &z, similar results should hold more generally
for functions with algebraic roots, with the restriction that we have domi-
nating roots and the recurrences are nondegenerate. Also, the results should
hold by allowing the coefficients to be polynomials in n with the restriction
that the coefficient of the dominating root is constant.

Moreover, it is clear that the results can be quantified by using quantita-
tive versions of the Subspace Theorem, e.g. due to Evertse [7].

3. AUXILIARY RESULTS

The proof of our theorem depends on a version of the Subspace Theorem
due to Schlickewei (the following version can be found in [17, 16]).

Let K be an algebraic number field. Denote its ring of integers by O and
its collection of places by Mg. For v € Mg, x € K, we define the absolute
value |z|, by

() |z|, = |o (@)K if v corresponds to the embedding o : K < R;
(i) |z], = |o(z)|¥Y = |5(z)|¥* Y if v corresponds to the pair of conju-
gate complex embeddings o,6 : K — C;

(iii) |z|, = (Np)‘ordp(m)/[K:Q] if v corresponds to the prime ideal p of Ok.
Here Np = #(Ok/gp) is the norm of p and ord,(z) the exponent of p in
the prime ideal decomposition of (z), with ord,(0) := oco. In case (i) or (ii)
we call v real infinite or complex infinite, respectively; in case (iii) we call v
finite. These absolute values satisfy the Product formula

(12) I lzlo=1 for z € K\{0}.
VEMg
We define the K-height of z € K to be
Hi(z) = [ max{1,|a|,}.
vEME
Observe that Hg(z) = |z| (the usual absolute value) for z € Z and that

Hi(x) = ()",

for z € K and for a finite extension L of K.

The height of x = (z1,...,z,) € K™ with x # 0 is defined as follows: for
v € Mg put

x|y = oax |-

Now define
Hx) = [] max{1,[x],}.

vEME
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Theorem 2. (Subspace Theorem, Schlickewei) Let K be an algebraic
number field and let S C My be a finite set of absolute values which contains
all the infinite ones. For v € S, let Ly 4,..., Ly, be n linearly independent
linear forms in n variables with coefficients in K. Let § > 0 be given. Then
the solutions of the inequality

(13) ITIT 1) < H(x)

veS i=1
with x € (Ok)" and x # 0 lie in finitely many proper subspaces of K™.

This follows from Theorem 1D’ in [17], page 178.

Below we have collected two simple lemmas which are needed in our
proofs. Namely, we need an estimate for the number of zeros occurring in a
linear recurring sequence (this number is called the zero multiplicity of the
recurrence). The proof is easy and therefore we give it (cf. [9]).

Lemma 1. Let (G,) be a linear recurring sequence defined by G, = c1af +
cooly 4+ -+ o where t > 1,¢; are non-zero complex and oip > +++ > ap > 0
are real numbers. Then the number of solutions of the equation

G,=0
15 at most t — 1.

Proof. We prove our assertion by induction on ¢. The case ¢ = 1 is trivial.
Now consider the function of one real variable

g(z) = c1exp(zlog(ai/ag)) + - -+ + ci—1 exp(z log(ay—1 /) + .

Observe that by separating real and imaginary parts we can assume that
the ¢; are real. Clearly, the zeros of g at positive integral points are exactly
the zeros of G,,. Now, g(z) is a differentiable function of the real variable
z. So, between any two zeros of g one can find a zero of the derivative ¢’
of g. Since the derivative is a function of the same type, with ¢ — 1 terms,
the inductive hypothesis can be applied and the desired conclusion follows. [

Let us mention the remarkable result that there exists an upper bound
(which does only depend on the order ¢, but in fact triply exponentially) for
the zero multiplicity of arbitrary nondegenerate linear recurring sequences
of complex numbers due to W.M. Schmidt [19].

As a second lemma we prove that the construction leading to the polyno-
mial g; has the properties we have claimed.
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Lemma 2. Let f, G,(zo), e ,G%d) and a be as at the beginning of Section 2.
Then the dominant root in

fleo,. . g &,
(0)a
g

is a® and it appears as the coefficient of z%.

Proof. Let us assume that

(0%
_ 1
T ow
Qaq

Thus, we have

1
()7
(14) a> —

foralli =1,...,d.

ago) di
It is clear that it is enough to investigate how the dominant roots transform

under the substitution
an

agO) d

Y= z.

The dominant root in the coefficient of z¢ is

e

k
0ot _ o
1 — d—k *
«a (0) &
1 al
Moreover, the dominant root in the coefficient of z¢~* for i = 1,...,d is
(4) O (k)% (k) 7 (k)%
i d—1i ?
ol _ o a < Y o _
1 =i — d—i —Rd—1) = (k)i d=k)(d—) — d—k
(0) 4 (0) 4@ (0) dk (0)dx (0) dk (0) %
Qg Qg Qq aq aq Qg

where we have used the definition of « (especially (14)) and the upper bound

is the dominant root of the coefficient of z%. Observe that for the coefficient
d—k

of z we get
(k) ¥ k)T (k)
(k) ad=F _ o o _ 9
@ -k d—k @d—k)(d—k) d—k 7
(0) 4 (0) @ (0)  dk (0) &
Qg aj o 231

and therefore the dominant root also appears in the power sum which
appears as coefficient of 24—, O

Our last tool is the Implicit Function Theorem. The basic form of the
Implicit Function Theorem is the assertion that a function in n variables,
of sufficient smoothness, satisfying an appropriate nondegeneracy condition,
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can be used to define one of the variables as a function of the other n — 1
variables. Here we will consider the implicit function theorem in the real
analytic category (see [11], page 35 and [12]). We will use the following
notation: a multitndex « is an element of N™. Set

la] = |a1 + ... + am)-
We will write 0 to mean the multiindex (0,...,0).

Theorem 3. (Implicit Function Theorem) Suppose the power series
F(zy,...,zpy) = Z Qo k7" ---xﬁ"yk
la>0,k>0
is absolutely convergent for |z1|+ ...+ |z,| < Ry, |y| < Ro. If
app =0 and ag; #0
then there exist ro > 0 and a power series
(15) flze,...;z) = Z Cox{t o adr
|a|>0

such that (15) is absolutely convergent for |z1|+ ...+ |z,;| < 79 and

F(z1,...,zp, f(21,...,2,)) = 0.

Moreover: if the coefficients of F' are algebraic, then the coefficients of f are
also algebraic.

Observe that it is clear that the same holds in a more general form.
Suppose that F(z1,...,,,y) converges absolutely for |z1| +...+ |z,| < Ry
and that |y —yo| < Rp for some yy € Q with F(0,...,0,y0) = 0. Then under

the assumption that
OF
=—(0,...,0, 0.
By ( Yo) #

the conclusion is that there exists a power series

f(z1,...,2;) = Z CaZt - Tl

e[ >0

for which the same as above holds.

4. PROOF OF THE MAIN THEOREM

In the sequel Cy,C>,... will denote positive numbers depending only on
the coefficients and roots of G%O), e ,G%d).

According to Lemma 1 the number of solutions of our equation
GOyl 4G9 =0
of the form (n,0),n € N can be estimated by
(),
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Moreover, the set N of solutions of
GO =g = =g¥=9p

leads trivially to finitely many families of solutions of the form (n,y), with
n € N,y € Z. Consequently, we can restrict ourselves to solutions of the form
(n,y) € Nx Z with n ¢ N and y # 0, i.e. to solutions (n,z) € (N\\N) x K
of

with z # 0, where K is the number field generated by the coefficients of
G%O), ... ,G%d), and by

&=

(0)

a, o

From now on we will look at a subsequence of such solutions, which we
will denote by (n,y,) € N x Z (respectively (n,z,) € N x K) with n € ¥,
where 3 is a set of positive integers.

First, we show that the sequence (z,)nex must be bounded. Assume that
this is not the case. We can write (see Lemma 2)

gf(1,...,zr,2) = (L 4+ po(z1,. .. ,.TT))Zd + ...+ palz1, ..., zp)
with polynomials p;(z1,...,z,) for which py(0,...,0) = 0 holds. Dividing
by 2371, we get

= _pl(’y'{&aa’},'rr‘b) _pQ(fY{Laa’Y'/r‘L)zrjl T _pd(fy'?a"'afyz‘b

From this it follows that there exist constants di,ds such that we have

di < |1+ po(vTs---,7))zn] < do.

—d+1
)z,

Since
1+po(y?s--yv)) — 1, for n — oo,
we conclude that z, is bounded, which is a contradiction.

From this discussion it follows that all solutions (n, z,) lie in the union of
arbitrarily small neighborhoods of the solutions of

gf(O""70’z) :O7

at least if n is large enough. In what follows we will only consider those n,
lying in a subsequence R C ¥, for which z, converges.

Now by (10), Remark 2 and the Implicit Function Theorem 3 we can
conclude that

z=2z0+ E a;zl ...y
|i]>0
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with a; € Q, where z satisfies g7(0,...,0,20) = 0. This series converges
around the point (z1,...,z,) = (0,...,0). Therefore for each solution (n, zy)
of (16) with n € R sufficiently large, we get

— i1in irn
Zn =20+ E aiYr Y
|i]>0

for some zp and coefficients a;, and if n is large enough.

Next we are going to approximate z, by a finite sum extracted from the
above expansion. We define

Vo := 20 + Z aifyil" ... ’)’irn,
0<|i|<H
where H > 1 is an integer to be chosen later. We may write

h—1

Vo = zo+Zc]ﬂ§L, n€R,
j=1

where c; € Q and the Bj are distinct, less than 1, and lie in the multiplicative
group A. Clearly V,, is nondegenerate. Moreover, we have
h<H".

We enlarge K at once and assume that it contains all the coefficients c;.

Observe that we can approximate the error we make by approximating
zn by V. We have

|zn, — Vo| < Cr max{vi,... ,'yr}H” = ClCQH",
because we have
zZ— 20— Z aim’f a:ff =0 (max{ml,...,mr}H) .
0<|i|<H

We want to point out that Co := max{vy,...,%} < L.

For later purpose we need an estimate of the K-height of z,. We derive
first an estimate for H i (y,). Observe that we have

an

ol

bl

|yn| < (s

since |zp| is bounded. Therefore, we get
Hic(yn) = Ho(yn) 'Y = lya| Y < 405

By our relation
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and the fact that the height of a product can be bounded by the product of
the heights we conclude

-

(0)

o

n
’HK(zn) S 047'[1(( ) Cg = CGC?.
Observe that we need here that y, € Z.

We choose H so that

(17) cher <.

From now on H is fixed and therefore also h, c;, 5; for i = 1,...,h are fixed.
We choose a finite set S of absolute values of K so that it contains all infinite
absolute values. Moreover we require that all az(-j ), i=1,...,t0, j=0,...,d

are S-units. In particular, with this choice all the 3; are S-units. Also, the
zp, are S-units, in view of the relation

and the fact that the y, are integers.
We shall apply the Subspace Theorem 2, so let us define, for every v € S,
h + 1 independent linear forms in X := (Xj,..., X}) as follows: put
Looo(X) = —Xo + X1 + 1 Xo ... + 1 Xp,
and for v € 5,0 < < h, (i,v) # (0,00) put
L;,(X) = X;.

Here oo denotes the infinite absolute value, which coincides with the complex
absolute value in the embedding of K in C. For n € R define the vectors

Xp = (—Zn, 1;18?5 s 7:82—1) € (OI()}H_1

and consider the double product

h
H H |Li,v(xn)|v-

vES i=0
By putting
o=—zpn+z0+afl+...+cn-1Bh-1 = Loo(Xn),

we can rewrite the double product as

oloe | TT 1= 2bo (th[lwm).

veS\{oo} vES i=1
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Observe that the g; are S-units for 7+ > 1. In particular, this implies by the
Product formula (12)

(H hf[l |ﬁm) =1.

veS 1=1
Moreover, we get

H | = znly | < Hik(zn) < CsC7T.
veS\{oo}

Therefore we have
h
H H |Liw(%n)o < C1Cs (CFC7)",
veS 1=0
where we have used the bound for the approximation error.
Last we need an upper bound for #(x,). We have
(18) H(xn) < Hi(zn)Hr (B1)" ... Hi (Br-1)" < CsCy.

Note that the constants do not depend on 7.

We now choose § so that
(19) clc,cf < 1.
This will be possible for small § in view of (17).

In view of the bound for the double product we derived and (18), the
verification of (13) of the Subspace Theorem 2 will follow from

C1Cs (CHCr)" < (CsC) 7,
which is the same as

(ctorch)" < (crescy)
However, this inequality follows from (19) for n large enough.

Therefore, by the Subspace Theorem 2, there exist finitely many non-zero
linear forms A1(X),...,A¢(X) with coefficients in Q such that each vector
X;, is a zero of some A;.

Now we have to consider two different cases depending on whether A;
depends on X or not. Since the arguments are analogous, it is enough to
consider A := Aq.
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Suppose first A does not depend on Xj. Then, if A(x,) = 0, we have a
nontrivial relation

h—1
uo+Zuiﬂ?:0, uw €Q,i=0,...,h—1.
i=1

By Lemma 1 this can hold for at most a finite number of n.

Suppose that A depends on X and that A(x,) = 0. Then we have

h—1

(20) znzvo—kazﬂf, v, €Q,i=0,...,h—1.
i=1

Substituting this into g¢(z1,...,2,,2) = 0 we get

h—1
95 (7?,---,7?,vo+zviﬂz”> =0
=1

and consequently

n

0 d a” Bic —
f G7(z)7 G\ ’an(o)% +Z’UZ' — = 0.
i =

? n ?

This equation can either hold for infinitely many n (and in this case by the
theorem of Skolem-Mahler-Lech for all n in a suitable arithmetic progression
P) or does not hold as an identity. The first case leads to the power sum

n

h—1
a” Bia
Hy, = 0%+Zvi Z1 )
% i=1 (0)¢

having the property that (n, H,,) is a solution for all n in the above arith-
metic progression. Observe that H, is in Q& 4. But in the intersection of the
arithmetic progressions {m(di) +k : m € N} NP =: P, for 0 < k < di
(where i is the index for which the maximum in the definition of « is ob-
tained), the power sum H,, has positive rational roots. By taking conjugates,
we immediately see that in fact the coefficients must be rationals too. But
now by Lemma 1, page 322 in [4] it follows, since H,, € Z for all n in the
above intersection of arithmetic progressions, which is again an arithmetic
progression, that

Hn = nePy S 82—

The second case can only hold for finitely many n again by Lemma 1. There-
fore the proof is finished. O
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5. PROOF OF THE COROLLARIES

Let us notice that the assumption that the polynomial f is monic
excludes the existence of families of solutions of the type (n,y) with
arbitrary y (the second “trivial” infinite family in Theorem 1).

PrOOF OF COROLLARY 1
In this case it is clear that we have

1
d—1)@-T
o= ag ) ,

as dominating root in the equation
e I S O
We therefore substitute
y=a"z.
Then all the roots of
1

adn

F(L,GY,. .. ,GD amz)

are < 1, and the only roots = 1 appear as coefficients of y¢ and y. Let
Y1,---,7 be all different roots < 1. Then we get

g7(0,...,0,2) = 2% + a{" Mz = 2(21 + ('),

which has only simple roots, and thus we can apply Theorem 1. From this
the conclusion follows. |

PROOF OF COROLLARY 2
Our intention is to reduce the equation

v+ Gy +G2 =0

to equations for which Theorem 1 can be applied and from this we get
the conclusion. For short we denote the dominating roots of GS), G,(f) by
a, B, respectively. There are three cases to consider: o® < 82,03 > B2 or

ad = p2.

Assume that o3 > 42. We substitute

n
2

Y=qa2z.

Thus, we get
a2+ [agl)a%n -I—] z+ag2)ﬁ" +...=0,
where the roots in the dotted part are all

3n
<o2.
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Dividing through by this number implies
2+ [agl) +...]z+a§2) (g)n-l- =0.
«?
Thus
97(0,0,2) = 2(2% + agl)),
which has only simple roots and consequently Theorem 1 can be applied to

this situation.

Now assume that 52 > o3 holds. We substitute
y=PB:z
and therefore get
Bz + [agl)anﬂ% +.. ] z+ a@ﬂ” +...=0.

Dividing through by g" gives

agl) <%> +...
B3

where again in the part not written down only roots < 1 appear. Now we
have to consider the cases 82 > o® and 3? = o? separately.

22+ z—}—agQ)—i—...:O,

If B2 > o? then we get
g7(0,...,0,2) = 2+ agl)z,

which has only simple roots and therefore Theorem 1 can be applied.

If A% = o® we get

97(0,...,0,2) = 2% + agl)z + a§2),
and this cubic polynomial has only simple roots when
1)3 2)2
10" + 2748 £ 0

holds. Therefore the proof is finished. O

PrROOF OF COROLLARY 3 o
First we have to consider, whether there exists H, € Q&g with

H? + ao™H, +b8" =0

for all n in an arithmetic progression. Let H, be a power sums with this
property. Then it follows

H,(H? + aa™) = —bp"
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and therefore H,, divides b5"™ in the ring @5@. Since the units of this ring
are of the form ¢y™ we can conclude (since H,, divides a unit) that

H,=cc"

with ¢,y € Q. In fact we have that v is in the multiplicative group generated
by a, 8. Hence, we have to consider

A3+ ac(ay)™ + 8™ = 0.

This equations has infinitely many solutions only in the case when 3 =
B,7? = a and o® = 32, because otherwise at least two elements of the set
{43, ay, B} would be different and therefore the equation would have finitely
many solutions by Lemma 1. In this case the equation becomes

(¢ +ac+b)B" =0,

which either has no solution or is true identically if ¢* + ac + b = 0.

Thus, by Corollary 2, for o® # (% the conclusion follows. In the case
a® = B2 our equation reduces via the transformation

y=pBiz
and diving through by 8" to
224+ az+b=0.

This in turn means that there are at most 3 possible values for z and each
of them induces as above the (simple) power sums

B%ZO.

Therefore, the proof is finished. O
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