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1. Introduction

A Diophantine m-tuple is a set {a1, . . . , am} of positive integers such
that aiaj +1 is a perfect square (i.e. a square of a number in ZZ) for all
1 ≤ i < j ≤ m. Finding such sets was already investigated by Diophan-
tus and he found the rational quadruple {1/16, 33/16, 68/16, 105/16}.
The first quadruple in integers, the set {1, 3, 8, 120}, was found by
Fermat. Infinitely many Diophantine quadruples are known and it is
conjectured that there is no Diophantine quintuple. This was almost
proved by Dujella [7], who showed that there can be at most finitely
many Diophantine quintuples and all of them are, at least in theory,
effectively computable. Several variants of this problem have been
studied in the past. For example, Bugeaud and Dujella [2], proved up-
per bounds for the size m of sets of positive integers with the property
that the product of any two distinct elements plus one is a perfect k-th
power for fixed k, namely m is bounded by 7 for k = 3, by 5 for k = 4,
by 4 for 5 ≤ k ≤ 176, and by 3 for k ≥ 177. Another variant studied
previously is concerned with perfect powers instead of squares or k-th
powers for fixed k. The second author proved that the abc-conjecture
implies that the size of such sets is bounded by an absolute constant,
whereas unconditionally there are bounds depending on the largest el-
ement in the set (see [13] and the papers cited therein). For further
results on Diophantine m-tuples and its variants, we refer to [8].

In this paper, we treat another variant of this problem. Let r and
s be nonzero integers such that ∆ = r2 + 4s 6= 0. Let (un)n≥0 be a
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binary recurrence sequence of integers satisfying the recurrence

un+2 = run+1 + sun for all n ≥ 0.

It is well-known that if we write α and β for the two roots in C of
the characteristic equation x2 − rx − s = 0, then there exist constants
γ, δ ∈ IK = Q[α] such that

(1) un = γαn + δβn

holds for all n ≥ 0. We shall assume in what follows that the sequence
(un)n≥0 is nondegenerate, which means that γδ 6= 0 and α/β is not root
of unity. We shall also make the convention that |α| ≥ |β|. Note that
|α| > 1.

Here, we look for Diophantine triples with values in the set U =
{un : n ≥ 0}, namely sets of three distinct positive integers {a, b, c},
such that ab+1, ac+1, bc+1 are all in U . Clearly, there are always such
pairs as e.g. {1, un−1}. Note that if un = 2n+1 for all n ≥ 0, then there
are infinitely many such triples (namely, take a, b, c to be any distinct
powers of two); in this situation, we can even get arbitrarily large sets
{a1, . . . , am} with the property that aiaj +1 ∈ U for all 1 ≤ i < j ≤ m.
Our main result is that the above example is representative for the
sequences (un)n≥0 with real roots for which there exist infinitely many
Diophantine triples with values in U . More precisely we prove the
following.

Theorem 1. Assume that (un)n≥0 is a nondegenerate binary recur-

rence sequence with ∆ > 0 such that there exist infinitely many sex-

tuples of nonnegative integers (a, b, c; x, y, z) with 1 ≤ a < b < c such

that

(2) ab + 1 = ux, ac + 1 = uy, bc + 1 = uz.

Then β ∈ {±1}, δ ∈ {±1}, α, γ ∈ ZZ. Furthermore, for all but finitely

many of the sextuples (a, b, c; x, y, z) as above one has δβz = δβy = 1
and one of the following holds:

(i) δβx = 1. In this case, one of γ or γα is a perfect square;

(ii) δβx = −1. In this case, x ∈ {0, 1}.

Theorem 1, of course, implies that there are only finitely many triples
of positive integers such that the product of any two plus one is in U ,
except in the cases described (and these cases really occur as we saw
above). We mention that the problem can be reformulated as a Dio-
phantine equation of polynomial-exponential type with three indepen-
dent exponential variables and three additional polynomial variables,
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namely

(ab + 1 − ux)
2 + (ac + 1 − uy)

2 + (bc + 1 − uz)
2 = 0.

It is well-known that the Subspace theorem is a powerful tool for such
problems, e.g. it was also used to classify the solutions to the equation
Aux +Buy +Cuz = 0 for fixed A, B, C ∈ ZZ in [17] (see [18] for a survey
on such equations). A new development in applying the Subspace
theorem was startet by Corvaja and Zannier (see [22, 23, 10]), and
their techniques will also be used in our proof (especially we use [6, 11]
and [5]). We could not prove any finiteness result for the case when
∆ < 0, the reason being that in this case there is no dominant root in
the polynomial-exponential Diophantine equation, which is the main
restriction in applying the Subspace theorem with these techniques at
present.

For example, it follows for the particular case of the Fibonacci se-
quence (Fn)n≥0, given by (r, s) = (1, 1), F0 = 0 and F1 = 1, that there
are at most finitely many triples of positive integers such the product
of any two plus one is a Fibonacci number Fn. In the subsequent paper
[16] the second and third author show that there is in fact no triple of
distinct positive integers a, b and c such that ab + 1, ac + 1 and bc + 1
are all three Fibonacci numbers.

2. A bird’s-eye-view of the proof

For the convenience of the reader we will give an overview of the
proof of the theorem, since the proof is rather long and becomes more
and more technical towards the end. We mention that throughout the
paper the symbols o, O,∼,�,�,�, are used with their usual meaning.

Since ∆ > 0, it follows that |α| > |β|. We shall show that one
may assume that both α and γ are positive. We assume that we have
infinitely many solutions (a, b, c; x, y, z) to equation (2). Then z → ∞,
x < y < z if z is sufficiently large, and c | gcd(uy − 1, uz − 1). The
case δβz = 1 is not hard to handle. When δβz 6= 1, results from
Diophantine approximations relying on the Subspace Theorem, as the
finiteness of the number of solutions of nondegenerate unit equations
with variables in a finitely generated multiplicative group and bounds
for the greatest common divisors of values of rational functions at units
points in the number fields setting, allow us to reduce the problem
to elementary considerations concerning polynomials. By using unit
equations, we first conclude that log b and log c have the same orders
of magnitude, therefore x � y � z. Then we show that a is also
large which will come in handy lateron. These preliminaries can be
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found in the next two sections (see Section 3 and 4). Next, since the
multi-recurrence ((ux − 1)(uy − 1)(uz − 1))x<y<z has a dominant root
and comparable positive integer subscripts, a result of the first author
from [11] tells us that for infinitely many of our solutions, the positive
integer abc is a linear combination of finitely many of the monomials in
αx, βx, αy, βy, αz, βz appearing in the formal Puiseux expansion of
√

(ux − 1)(uy − 1)(uz − 1). Hence, the relation (abc)2 = (ux − 1)(uy −
1)(uz − 1), may now be regarded as a unit equation with unknowns in
the multiplicative group generated by α and β, and it remains to deal
with it (equivalently, it can be viewed as the problem of calculating the
zeroes of a multi-recurrence; this is not an easy task, see e.g. Remark
5 in [11]). The proof now falls in two distinct cases: the case when α
and β are multiplicatively independent or multiplicatively dependent.
In case α and β are multiplicatively independent (which together with
the considerations outlined above is handled in Section 5), listing the
first few dominant units in both sides of the equation and identifying
them, one gets a few linear relations among the exponents x, y and z. It
turns out that if one goes back to the original equations, these few linear
relations are enough to get a contradiction in this case. In case when α
and β are multiplicatively dependent (see Section 6), we argue without
going back to the before mentioned multi-recurrence. Instead, we show
first in an elementary way (using just the pigeon hole principle), that
there are only finitely many lines in ZZ3 the union of which contain
all possible triples (x, y, z) leading to a solution of our problem. Since
we have infinitely many solutions, we may assume that for infinitely
many of them we have x = d1t + e1, y = d2t + e2, z = d3t + e3, where
d1, d2, d3, e1, e2, e3 are fixed integers with the first three positive and t
is some positive integer variable. But in this case, since α and β are
also multiplicatively dependent, it follows that ux − 1, uy − 1, uz − 1
are all polynomials in ρt, where ρ is some number such that α = ρi and
β = ±ρj for some integers i and j. Since any two of these numbers have
large greatest common divisors, it follows that these three polynomials
have common roots any two of them and their product is the square
of some other polynomial. The proof ends by a careful analysis of
how these polynomials might share their roots with a view of getting
a contradiction.

3. Preparations

Let IL be any algebraic number field and S be a finitely generated
multiplicative subgroup of IL. Given N ≥ 1, a unit equation is an
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equation of the form

(3)
N
∑

i=1

aixi = 1,

where a1, . . . , aN ∈ IL are fixed nonzero coefficients and x1, . . . , xN ∈ S.
A solution (x1, . . . , xN ) of the above unit equation is called nondegen-

erate if
∑

i∈I aixi 6= 0 for all proper subsets I ∈ {1, . . . , N}. In such a
case, we will call the unit equation (3) itself nondegenerate. We record
the following result about unit equations.

Lemma 2. There are only finitely many nondegenerate solutions x =
(x1, . . . , xN ) ∈ SN to the unit equation (3).

We will use Lemma 2 several times in what follows. In our case (and
for the rest of the paper), S is the multiplicative group generated by α
and β inside IK; i.e., S = {αnβm : n, m ∈ ZZ}. In this special case (3)
can be rewritten as

(4)

N
∑

i=1

aiα
niβmi = 1

to be solved in integers n1, . . . , nN , m1, . . . , mN . Lemma 2 tells us
that there are only finitely many (n1, . . . , nN , m1, . . . , mN) ∈ ZZ2N such
that no subsum on the left of (4) vanishes. In the case when the
right hand side of (4) is 0, then Lemma 2 implies that the differences
ni − nj, mi − mj are bounded for all 1 ≤ i < j ≤ N and for all
n1, . . . , nN , m1, . . . , mN such that no subsum on the left vanishes. We
mention that the set of all IK-linear combinations of elements in S is
easily understood: it is isomorphic to IK[X±1, Y ±1] in the case when
α and β are multiplicatively independent and isomorphic to IK[X±1]
otherwise.

We will also need the following lemma. Assume that (un)n≥0 is
the nondegenerate binary recurrent sequence whose general term is
given by the formula (1). Assume further that ∆ > 0, therefore that
|α| > |β|. We have the following result.

Lemma 3. There exists constants κ0 ∈ (0, 1) and z0 such that if y and

z are positive integers with z > max{y, z0}, δβz 6= 1 and uy 6= 1, then

gcd(uy − 1, uz − 1) < |α|κ0z.

Proof. Clearly, |uy − 1| � |uy| � |α|y. Thus, if for some small ε > 0
but fixed we have y < (1 − ε)z, then we can take κ0 = 1 − ε/2 and
the desired inequality holds for large z. From now on, we shall assume
that the inequalities (1 − ε)z < y < z hold with some small ε > 0 to
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be fixed later. Put λ = z − y ∈ (0, εz). Let D = gcd(uy − 1, uz − 1).
Then

(5) D | γαy + δβy − 1 and D | γαy+λ + δβy+λ − 1.

Multiplying the first divisibility relation above (5) by the algebraic
integer αλ, we also have that D | γαy+λ + δβyαλ − αλ. From this and
the second relation (5), we get

(6) D | δβy(αλ − βλ) − (αλ − 1).

Let us first assume that the algebraic integer appearing in the right
hand side above is zero. We then get

(7) 1 = αλ + δβz − δβyαλ.

This is a unit equation in four terms. If it is nondegenerate, then it
has only finitely many solutions. Thus, taking z0 sufficiently large,
it follows that if equation (7) holds, then it must be degenerate. In
this case, one of αλ, δβz, or −δβyαλ equals 1. The case δβz = 1 is
excluded by hypothesis. The case αλ = 1 leads to λ = 0, which is
impossible. Finally, the case −δβyαλ = 1 leads to δβz + αλ = 0, or
|α|λ = |δ||β|z. If |β| 6= 1, we then get that z log |β|+ log |δ| = λ log |α|.
Since λ < εz, it follows that the above relation is impossible for large
z if we choose ε < log |β|/(2 log |α|). Thus, if z > z0, then we must
have |β| = 1, therefore |α|λ = |δ|. Now the relation −δβyαλ = 1 leads
to |α|λ = |δ|−1. Thus, |α|λ = |δ| = |δ|−1, leading to |δ| = 1. We next
get |α|λ = 1, therefore λ = 0, which is a contradiction.

From now on, we may assume that z is sufficiently large, and there-
fore that relation (7) does not hold.

Assume first that IK = Q. Then the nonzero integer appearing in
the right hand side of (6) is of size
∣

∣δβy(αλ − βλ) − (αλ − 1)
∣

∣ � exp(y log |β| + λ log |α|)

≤ exp (z (log |β| + ε log |α|)) < |α|κ0z,

for a certain κ0 < 1 (depending on ε) provided that we first choose
ε < (log |α| − log |β|)/ log |α|, and then we let z be sufficiently large.
This finishes the proof of the lemma in this case.

Assume now that IK is quadratic. Conjugating (6) by the nontrivial
Galois automorphism of IK over Q, we get

(8) D | γαy(βλ − αλ) − (βλ − 1).

Multiplying relations (6) and (8), we get

D2 |
(

δβy(αλ − βλ) − (αλ − 1)
) (

γαy(βλ − αλ) − (βλ − 1)
)

,
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and the right hand side above is a nonzero integer. Hence,

D2 � exp (y log |αβ|) + 2λ log |α|) ≤ exp ((log |αβ| + 2ε log |α|)z) .

Choosing ε < (log |α| − log |β|)/(2 log |α|), one checks easily that the
last inequality above leads to the conclusion that D ≤ |α|κ0z for a
certain κ0 ∈ (0, 1) (depending on ε) provided that z is sufficiently
large. This completes the proof of Lemma 3. ut

We mention that Bugeaud, Corvaja and Zannier (see [1]), showed
by using the Subspace theorem that if a > b > 1 are multiplica-
tively independent integers, then for all ε > 0 there exists nε such
that gcd(an − 1, bn − 1) < exp(εn) if n > nε. Afterwards, this result
was extended in various ways by various authors (see [5], [9], [14] and
[20] for a sample of such extensions). The last lemma is a weak form
of such a result, which is enough for our purpose, and admits an easier
proof. Furthermore, we point out that a generalisation of these results
to the number-field setting can be found in [5], which will also be used
later.

4. Further Preliminaries and the case δβz = 1

In this section, we will prove some useful information on the solutions
of our problem. Especially, we will handle the case when δβz = 1, which
gives the exceptional solutions in the theorem.

4.1. Both z and y are large. Assume that 1 ≤ a < b < c and that
ab + 1 = ux, ac + 1 = uy and bc + 1 = uz. We may assume that there
are infinitely many such triples, therefore that c → ∞. Since |α| > |β|,
we have

|un| = |γ||α|n|1 − dc−1(β/α)n|,

and (β/α)n tends to zero as n → ∞. This shows that if n > n0 is
sufficiently large, then |un| < |um| means n < m. Since

uz = bc + 1 > max{ux, uy} = max{|ux|, |uy|},

we get that z > max{x, y}. Further, since c is arbitrarily large and
uy = ac + 1 > c, it follows that y is arbitrarily large. Since uy =
ac+1 > ab+1 = ux, it follows that if c is sufficiently large, then y > x.
Thus, we may assume that x < y < z. Clearly, z tends to infinity. We
shall assume that z > z0, where z0 is a sufficiently large number, not
necessarily the same at each occurrence. Note that

uz = |γ||α|z|1 − dc−1(β/α)z| = bc + 1 ∈ [c, c2],

showing that

(9) log c ≤ z log |α| + O(1) ≤ 2 log c.
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Since

uy = |γ||αy||1 − dc−1(β/α)y| = ac + 1 > c,

we get that

(10) log c ≤ y log |α| + O(1).

Estimates (9) and (10) show that z ≤ 2y + O(1).

4.2. The case when δβz = 1. Since z is large, the above relation
implies β = ±1, therefore δ = ±1. Hence, α ∈ ZZ. Furthermore, since
γ = u0 − δ = u0 ± 1, we get that γ ∈ ZZ. Moreover, δβy and δβx are
both in {±1}. If δβy = −1, we then have

bc = γαz and ac = γαy − 2.

It is easy to see that for large z we have gcd(γαz, γαy − 2) = O(1).
This shows that c = O(1), therefore that z = O(1). This leads to only
finitely many solutions. Thus, if z is sufficiently large, then δβy = 1.
If also δβx = 1, then

ab = γαx, ac = γαy, bc = γαz,

therefore (abc)2 = γ3αx+y+z, implying that either γ or γα is a perfect
square, according to whether x + y + z is even or odd, respectively.
Assume now that δβx = −1. Then

ab = γαx − 2, ac = γαy, bc = γαz.

Furthermore, since δβy = δβz = 1 but δβx = −1, it follows that
β = −1, y and z have the same parity, and x has opposite parity.
Since abc2 = γ2αy+z and y and z have the same parity, it follows that
ab is a perfect square. Assume now that x ≥ 2. Then

(11) ab + 2 = γαx.

But since a and b divide γαy and γαz, respectively, it follows that all
primes dividing ab divide γα. The last relation above (11) shows now
that the only prime factor of ab is 2. Hence, ab is a power of 2 and
since it is a square, it is ≥ 4. Thus, 2‖ab + 2 (i.e. 2|ab + 2, but 4
does not), therefore 2‖γαx, and since x ≥ 2, we get that 2‖γ and α is
odd. Now the relations ac = γαy and bc = γαz together with the fact
that ab is a power of 2, show that a ∈ {1, 2} and b ∈ {1, 2}, therefore
ab ∈ {1, 2, 4}. This is impossible since 1 ≤ a < b and ab must be a
perfect square. Thus, if δβx = −1, then x ∈ {0, 1}. This takes care of
the exceptions (i) and (ii) appearing in the text of Theorem 1.
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4.3. All three x, y and z are large. From now on, we assume that
δβz 6= 1. Note that uy = ac + 1 > 1. Lemma 3 shows that there exists
a positive constant κ0 < 1 such that the inequality

gcd(uz − 1, uy − 1) < |α|κ0z

holds provided that z is sufficiently large. Thus, the fact that c divides
gcd(ac, bc) = gcd(uz − 1, uy − 1) shows that c < |α|κ0z, leading to

b =
uz − 1

c
� |α|(1−κ0)z.

Since |α|x � ux = ab + 1 > b � |α|(1−κ0)z, it follows that x ≥ (1 −
κ0)z + O(1). Thus, x tends to infinity with c also and, in fact,

(12) x � y � z.

This will be essential when applying the Subspace theorem.

4.4. Signs of γ and α. Here, we comment on the signs of α and γ.
Assume that α > 0. Then the sign of un is the same as the sign of γ
once n > n0 is sufficiently large. Thus, if γ < 0, then there are only
finitely many n such that un is positive, and we obtain a contradiction.
Hence, γ > 0 when α > 0.

Assume now that α < 0. Then for large n, the sign of un alternates;
namely, the sign of un is the sign of γ(−1)n. Thus, if γ > 0, then for
large c the three numbers x, y, z are even, while if γ < 0, then for
large c the three numbers x, y, z are odd. Thus, we may replace the
pair of roots (α, β) by the pair (α2, β2), and keep the pair of coefficients
(γ, δ) (if γ > 0), or replace it by (γα, δβ) (if γ < 0), and consequently
suppose again that both α and γ are positive. From now on, we work
under this assumption, namely that α and γ are positive.

4.5. a is large. Here, we shall prove a fact that will turn out to be
useful later.

Lemma 4. We have a → ∞ as z → ∞ through integer values such

that δβz 6= 1. Furthermore, in case α and β are multiplicatively inde-

pendent, there exists a positive constant κ1 such that a > |α|κ1z when

z > z0.

Proof. We start by assuming that for each ε > 0 there are infinitely
many solutions with a < |α|εz. We will see that this condition with a
sufficiently small ε > 0 and a sufficiently large z entails that a = O(1)
when α and β are multiplicatively independent. Then we shall show
that this last condition leads to a contradiction without any assumption
on α and β with regard to their multiplicative independence.
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The equation

(13) a2 =
(ux − 1)(uy − 1)

(uz − 1)

implies

(14) |a2αz − γαx+y| � a2 max{|α|y|β|x, |α|y, |β|z}.

By estimate (12), it follows easily that there exists a constant κ2 ∈ (0, 1)
such that if ε > 0 is sufficiently small, then

(15) |a2αz − γαx+y| < |α|κ2 max{x+y,z}.

Indeed, putting κ3 for a positive constant such that min{x/z, x/(x +
y)} > κ3, a little calculation shows that the estimate (15) is implied
by the estimate (14) for large z when

ε < 2−1κ3 min{log |α|, log |α/β|}

with some constant κ2 (depending on ε) provided that z > z0 (here, z0

also depends on ε). Assume that x + y ≥ z since the other case can be
dealt with similarly. Then

(16) |a2αz−x−y − γ| <
1

|α|(1−κ2)(x+y)
.

This shows that z − x − y = O(εz). Our next aim is to deduce for
z > z0 that the left hand side of (16) has to be zero. Indeed, if IK = Q,
and the left hand side is not zero, then its näıve height is exp(O(εz)).
By the Liouville principle, if ε is sufficiently small and z is large, then
inequality (16) cannot hold. If IK is quadratic, and the right hand side
is not zero, then its conjugate is a2βz−x−y − δ. Thus, the height of
this number is again exp(O(εz)). By the Liouville principle again, we
arrive at a contradiction in inequality (16) for small ε > 0, assuming
that its left hand side is nonzero.

Hence, for z > z0, it follows that a = ±γ1/2α(x+y−z)/2. Now equation
(13) is

a2δβz − a2 = γδ(αxβy + αyβx) + δ2βx+y − γαx

− γαy − δβx − δβy + 1,(17)

with a = ±γ1/2α(x+y−z)/2. This is a unit equation. Let E be some
nondegenerate subequation containing the variable 1. Then any unit
in E can take only finitely many values. If α and β are multiplicatively
independent, it then follows that either E contains a2 = αx+y−z, or one
of the other units. In the first case, x+y−z = O(1), so a = O(1). In the
second case, one checks using the fact that α and β are multiplicatively
independent, that x = O(1); hence, only finitely many possibilities.
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From now on, we assume that a is bounded for infinitely many solu-
tions. Thus, infinitely many of these solutions will therefore have the
same value for a. Now rewrite equation (13) (keeping in mind again
that a2γαz = γ2αx+y as we did for (17)), as

a2 + 1 = a2δβz + δβx + δβy − δ2βx+y

+ γαx + γαy − γδαxβy − γδαyβx.(18)

This is again a unit equation. In order to discuss its degeneracies, we
distinguish several cases.

Assume first that α and β are multiplicatively independent. Then
there must be a nondegenerate subequation containing the left side
(a2 + 1 6= 0) and some member from the right hand side. There are
only finitely many such subequations, and each one of them has only
finitely many solutions. In each one of the cases, we get that x = O(1);
hence, only finitely many possibilities.

Assume now that α and β are multiplicatively dependent. In this
case, there exists ρ > 1 and coprime integers i > j such that α = ρi

and β = ±ρj.
If j > 0, then again there must be some non-degenerate subequation

of equation (18) containing the fixed nonzero number a2 + 1 from the
left hand side and some variable from the right hand side. This leads
to x = O(1); hence, only finitely many possibilities.

If j = 0, then β = ±1, α > 1 and γ, δ are all integers. We may also
assume that the class of (x, y, z) in (ZZ/2ZZ)3 is fixed. Thus, the three
numbers δβx, δβy and δβz are fixed in {±δ}. We rewrite equation (18)
as

a2 + 1 − a2δβz − δβx − δβy + δ2βx+y

= γ(1 − δβy)αx + γ(1 − δβx)αy.

The left hand side as well as the coefficients γ(1− δβy) and γ(1− δβx)
from the right hand side of αx and αy, respectively, are fixed. Assume
first that these coefficients are zero. Then δβx = δβy = 1 and the left
hand side must also be zero. This leads to a2(1 − δβz) = 0, therefore
δβz = 1, which is not allowed. Thus, at least one of the two coefficients
γ(1 − δβy) and γ(1 − δβx) from the right hand side is nonzero. Note
that the left hand side is a fixed integer. Thus, if the left hand side
is nonzero, then equation (18) is a unit equation with N = 1 or 2
according to whether one or none of the coefficients of αx and αy from
the right hand side vanishes. This leads again to x = O(1); hence,
only finitely many possibilities. Assume now that the right hand side
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is zero. Then

αy−x = −
1 − δβy

1 − δβx
, a2 = −

(1 − δβx)(1 − δβy)

1 − δβz
.

Since α > 1, it follows from the first of the above two equations that
the cases β = 1, or β = −1 and x ≡ y (mod 2) are impossible. Thus,
up to replacing δ by −δ if needed, we may assume that

αy−x = −
(1 − δ)

(1 + δ)
.

Since y > x and α is an integer, we get that 1 + δ | 1 − δ. Thus,
1 + δ | 2 leading to 1 + δ = −2, −1, 1, 2. The cases δ = 1 + δ = 1, 2
lead to δ = 0, which is not allowed, and α = 0, which is not allowed
either. The cases 1+ δ = −2, −1 give αy−x = 2, 3, respectively. Thus,
α = 2, 3, respectively, and y = x + 1. Now

a2 = −
(1 − δβx)(1 − δβy)

(1 − δβz)
= −

1 − δ2

1 ± δ
∈ {−4,−3, 2, 1},

so the only possibility is that a = 1. This happens if δ = −2 and
a2 = −(1 + δ), therefore 1 − δβz = 1 − δ, so z is even. On the
other hand, 1 = a = γ1/2α(x+y−z)/2 and γ and α are positive integers,
therefore γ = 1 and z = x + y = 2x + 1 is odd. This contradiction
shows that it is not possible that the left hand side of equation (18) is
zero and not both of the coefficients γ(1 − δβy) and γ(1 − δβx) of αy

and αx, respectively, from its right hand side be zero. Hence, if j = 0,
then there are only finitely many possibilities for x, y and z.

Finally, assume that j < 0. Then j = −1, i = 1, so β = ±α−1.
Rewrite equation (18) as

a2 + 1 − a2δβz − δβx − δβy + δ2βx+y + γδ(αxβy + αyβx)

= γ(αx + αy).

Its right hand side is � αy. Its left hand side is in absolute value
� αy−x, since β = ±α−1. Thus, αy−x � αy, leading to αx � 1,
therefore x = O(1); hence, finitely many possibilities.

Having analyzed all the possible scenarios and having arrived to only
finitely many possibilities in each case, we conclude that a = O(1)
leads to only finitely many possibilities. Thus, it must be the case that
a → ∞ as z → ∞. Furthermore, in case α and β are multiplicatively
independent, we have a > |α|κ1z when z > z0, where κ1 > 0 is some
constant. ut

We saw that δβz 6= 1. For future use, we also record that δβy 6= 1
and δβx 6= 1. Indeed, if say δβx = 1, then β = ±1 and a | gcd(γαz +
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(δβz − 1), γαx). Since δβz − 1 = O(1) is nonzero, it follows easily that
a is bounded, which is a contradiction. The similar contradiction that
b = O(1) is obtained if one assumes that δβy = 1.

5. The case α and β multiplicatively independent

In this section we will finish the proof of the theorem in the case
when α and β are multiplicatively independent. This will be done
by applying Theorem 1 of [11], which follows from the general result
from [6] (see also [3], [4], [10], or [12]). We will indicate the proof to
see that we get an additional piece of information which is not stated
explicitly, although well-known, in [11, Theorem 1]. Then we show that
the assumption of α and β being multiplicatively independent leads to
a contradiction. As a first independent step we show that min{y −
x, y − 2x, z − 2x} = O(1) in this case. Afterwards, the contradiction is
derived.

5.1. An application of the Subspace theorem. The three relations
(2) yield

(19) (ux − 1)(uy − 1)(uz − 1) = (abc)2.

Note that

(ux − 1)(uy − 1)(uz − 1) = γ3αx+y+z(1 + η),

where

η =
∏

t∈{x,y,z}

(

γ1

(

β

α

)t

+ δ1

(

1

α

)t
)

,

with γ1 = δ/γ and δ1 = −1/γ. Thus,

abc = γ3/2α(x+y+z)/2(1 + η)1/2 = γ3/2α(x+y+z)/2
∑

k≥0

(

1/2

k

)

ηk.

Furthermore, using the binomial formulae, for each k we have

ηk =
∑

(i,j)∈Γk

c(i,j)α
−i1x−i2y−i3zβj1x+j2y+j3z,

where Γk is the set of all sextuples (i, j) with i = (i1, i2, i3), j =
(j1, j2, j3) fulfilling i1 + i2 + i3 = k, and 0 ≤ j` ≤ i` for all ` = 1, 2, 3,
while c(i,j) are certain coefficients in IK indexed over the members of
Γk.

Since x, y and z have the same order of magnitude, the arguments
from [11] show that there exists a finite set Λ of sextuples (i, j) (note
that if (i, j) is given, then k is the sum of the entries in i), and nonzero



14 C. FUCHS, F. LUCA, AND L. SZALAY

coefficients d(i,j) ∈ Q for (i, j) ∈ Λ, such that infinitely many of the
solutions (a, b, c; x, y, z) have the property that

(20) abc = α(x+y+z)/2
∑

(i,j)∈Λ

d(i,j)α
−i1x−i2y−i3zβj1x+j2y+j3z.

From now on, we work only with such solutions. We insert abc given
by formula (20) into formula (19) and we end up with
(21)

(ux−1)(uy−1)(uz−1) = αx+y+z





∑

(i,j)∈Λ

d(i,j)α
−i1x−i2y−i3zβj1x+j2y+j3z





2

which upon expansion of both sides above leads to an S-unit equation
with infinitely many solutions. We now study this equation.

5.2. min{y − x, y − 2x, z − 2x} = O(1) when α and β are multi-

plicatively independent. We order the units appearing on the left
had side of the unit equation (21) according to their sizes of their ab-
solute values.

5.2.1. The case |β| > 1. It is then easy to see that

(ux − 1)(uy − 1)(uz − 1) = γ3αx+y+z + γ2δαz+yβx + γ2δαz+xβy

+ γ2δαx+yβz + γδ2αzβx+y + smaller units.(22)

We claim that for large z, we have

αz+y|β|x > αz+x|β|y > αx+y|β|z > αz|β|x+y.

Indeed, the ratios of any two consecutive expressions above are
(

α

|β|

)y−x

,

(

α

|β|

)z−y

,

(

α

|β|

)x+y−z

.

The first two expressions are certainly > 1 and they remain bounded
only when y − x = O(1) and z − y = O(1), and the fact that the third
one tends to infinity as z → ∞ is a consequence of Lemma 4 and of
the fact that αx+y−z � a2 ≥ ακ1z.

We now insert the right hand side of (22) in (21) and use Lemma
2 (see also the remarks made below Lemma 2). We may assume that
αx+y+z cancels from both sides of equation (21). Indeed, if not, then
(0, 0) 6∈ Λ, and the largest unit present in the right hand side is
≤ αy+z−x|β|2x. Let E be some nondegenerate subequation contain-
ing αx+y+z. If E contains some unit from the right hand side of (21),
we deduce that the ratio of αx+y+z to αy+z−x|β|2x is bounded; hence,
(α/|β|)2x = O(1), leading to x = O(1); thus, only finitely many pos-
sibilities. If on the other hand E contains some other unit from the
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left hand side of equation (21), then the ratio of αx+y+z to αy+z|β|x

is bounded. Thus, again (α/|β|)x = O(1), which leads to only finitely
many possibilities. From now on, we assume that αx+y+z cancels from
both sides of equation (21), so in particular that (0, 0) ∈ Λ.

Let E be some nondegenerate subequation containing αz+yβx.
If E contains either αzβx+y or one of the smaller units, then the

ratio of αz+yβx to αzβz+y stays bounded. This gives (α/|β|)y = O(1),
therefore y = O(1); thus, only finitely many possibilities.

If E contains either αz+xβy, or αx+yβz, we then get that (α/|β|)y−x =
O(1), which is what we are after.

If E does not contain any unit from the left hand side of (21), then
it must contain one from the right hand side. Hence, the ratio of

αy+zβx to αx+y+z βj1x+j2y+j3z

αi1x+i2y+i3z

is bounded for some (i, j) ∈ Λ with i1 + i1 + i3 = k 6= 0. Thus,

(23) α(i1−1)x+i2y+i3z � |β|(j1−1)x+j2y+j3z.

Since j` ≤ i` for ` = 1, 2, 3, it follows that (α/|β|)(i1−1)x+i2y+i3z � 1.
If i2 + i3 > 0, we then get y − x � 1, which is what we want. Thus,
i2 = i3 = 0, and since k > 0, we get that i1 ≥ 1. If i1 ≥ 2, we then get
x = O(1), so we get only finitely many possibilities. Thus, infinitely
many of the solutions will have i0 = (1, 0, 0). If j1 = 0, then estimate
(23) shows that |β|x � 1, therefore again x = O(1). Hence, j1 = 1 for
infinitely many solutions. This shows that for i0 = (1, 0, 0) and j0 =
(1, 0, 0) we have that (i0, j0) ∈ Λ. In particular, αx+y+z(β/α)2x appears
in the formula for (abc)2. Let F be some nondegenerate equation that
contains this variable.

If F contains a unit from the left hand side equal to αzβx+y or
smaller, we then get that the ratio of

αx+y+z

(

β

α

)2x

to αzβx+y

is O(1). This implies that (α/|β|)y−x � 1, or y − x = O(1), which is
what we want.

If F contains a unit from the left hand side which is in

{αy+zβx, αz+xβy, αx+yβz},

we then get that the ratio of αy+z−xβ2x to one of these three units
belongs to a fixed finite set of numbers. Thus, one of

(

α

β

)x

,

(

α

β

)y−2x

,

(

α

β

)z−2x
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belongs to a fixed finite set of numbers. The first possibility gives
x = O(1), so only finitely many possibilities. The second and third
show that y − 2x = O(1), or z − 2x = O(1), which is what we wanted.

Assume now that F does not contain any unit from the left hand side
of equation (21). Then it must contain some unit from the right hand
side. Thus, there must exist (i1, j1) 6= (2i0, 2j0) such that the ratio of
(β/α)2x to βj′

1
x+j′

2
y+j′

3
z/αi′

1
x+i′

2
y+i′

3
z belongs to a finite set of numbers.

Here, i1 = (i′1, i
′
2, i

′
3) and j1 = (j ′1, j

′
2, j

′
3). Put k = i′1 + i′2 + i′3. If k ≥ 3,

then
|β|j

′

1
x+j′

2
y+j′

3
z

αi′
1
x+i′

2
y+i′

3
z

�

(

|β|

α

)3x

,

and so we get that (α/|β|)x � 1, showing that x = O(1); hence, again
only finitely many possibilities. If k = 2, then it is easy to see that
units of this shape of maximal absolute value not equal to (β/α)2x

have maximal value at most (|β|/α)x+y. So, the ratio of (β/α)2x to
such a unit is � (α/|β|)y−x. Hence, (α/|β|)y−x � 1, showing that
y − x = O(1), which is what we want.

The only elements in F with k = 1 are

1

αx
,

1

αy
,

1

αz
,

(

β

α

)x

,

(

β

α

)y

,

(

β

α

)z

.

Thus, the ratio of (β/α)2x to one of the above six units belongs to
some finite set of numbers. If one of these six units is one of the first
four, then we get that one of β2xα−x, β2xαy−x, β2xαz−x, or (β/α)x

belongs to a finite list of numbers. Since α and β are multiplicatively
independent, we get that x = O(1); hence, there are only finitely many
possibilities. Finally, if one of these six units is one of the last two, we
then get that one of (β/α)2x−y or (β/α)2x−z belongs to a fixed finite
set of numbers. Thus, y − 2x = O(1) or z − 2x = O(1), as we wanted.

This finishes the case when |β| > 1.

5.2.2. The case |β| < 1. Here, we just sketch the main steps since the
argument is very similar to the previous one. Instead of (22), we have

(ux − 1)(uy − 1)(uz − 1) = γ3αx+y+z − γ2αz+y − γ2αz+x

− γ2αx+y + γαz + smaller units.(24)

The main roots are, in decreasing order of their absolute values,

αx+y+z, αy+z, αz+x, αx+y, αz,

and the ratios between any two consecutive ones is

αx, αy−x, αz−y, αx+y−z,
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respectively. The last one tends to infinity with z by Lemma 4. The
same argument as the one used at the case |β| > 1 shows that one
may assume that the unit αx+y+z cancels from both sides of the unit
equation (21), for otherwise we get x = O(1); hence, only finitely many
possibilities. Thus, (0, 0) ∈ Λ.

Let E be again some nondegenerate subequation of (21) containing
αy+z in the left hand side. If it contains some other unit from the
left hand side which is αz or smaller in absolute value, we get that
αy = (αy+z)/αz = O(1). Thus, we have only finitely many possibilities.
If E contains one of the units αz+x or αx+y from the left hand side, we
then get αy−x = O(1), which is what we want. Suppose now E contains
some unit from the left hand side, say of the form

αx+y+z βj1x+j2y+j3z

αi1x+i2y+i3z
,

where k = i1 + i2 + i3 > 0. Then

α(i1−1)x+i2y+i3z � βj1x+j2y+j3z.

Since |β| < 1, the above inequality leads easily to the conclusion that
x = O(1), unless i0 = (i1, i2, i3) = (1, 0, 0) and j0 = (j1, j2, j3) =
(0, 0, 0). Thus, (i0, j0) ∈ Λ, which shows that its square appears in
the right hand side of equation (21). Let F be some subequation
containing αy+z−x appearing on the right hand side of (21). Assume
that F contains some unit from the left hand side of (21). If this is αz or
some unit of a smaller absolute value, we get that αy−x � O(1). Thus,
y− x = O(1), which is what we want. If it contains one of αy+z, αx+z,
or αx+y, then one of the numbers αx, αy−2x or αz−2x belongs to a finite
list. Thus, either x = O(1), which happens for only finitely many
possibilities, or min{y − 2x, z − 2x} = O(1), which is what we want.

Finally, assume that F contains some other unit from the right hand
side of equation (21) of the form αx+y+zβj′

1
x+j′

2
y+j′

3
z/αi′

1
x+i′

2
y+i′

3
z. We

scale everything by αx+y+z. If k ≥ 3, then the largest such unit in
absolute value is 1/α3x. The ratio of 1/α2x to this unit is � αx, so if
this ratio is in a finite set of numbers, we then get x = O(1); hence,
only finitely many possibilities. If k = 2, then the largest such unit
in absolute value which is not 1/α2x is ≤ 1/αx+y. The ratio of 1/α2x

to such a unit is � αy−x. So, if this ratio is in a finite set, we get
y− x = O(1), as desired. Finally, the only possibilities when k = 1 are

1

αx
,

1

αy
,

1

αz
,

(

β

α

)x

,

(

β

α

)y

,

(

β

α

)z

.
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If F contains one of these units, we then get that one of

αx, αy−x, αz−x, (αβ)x, αy−2xβ−y, αz−2xβ−z

belongs to a finite list. In the first case, we get x = O(1). In the
next two, we get y − x = O(1), as desired. Finally, since α and β are
multiplicatively independent, in the last three cases we get x = O(1);
hence, finitely many possibilities also.

In conclusion, we proved that both when |β| > 1 and |β| < 1, as-
suming that α and β are multiplicatively independent, infinitely many
of the solutions will have one of y − x, y − 2x, or z − 2x bounded.

5.3. Proof of the theorem for α and β multiplicatively inde-

pendent. Suppose first that y − x = λ is a fixed number for infinitely
many of our solutions. Then

a | γαx + δβx − 1 and a | γαx+λ + δβx+λ − 1.

Multiplying the first equation relation above by αλ and subtracting
them, we get that

(25) a | δβx(αλ − βλ) − (αλ − 1),

and, as in the proof of Lemma 3, the right hand side above is nonzero
for z > z0. Note further that αλ − βλ 6= 0 because λ 6= 0 and α/β
is not a root of 1. Put ζ = δ−1(αλ − 1)/(αλ − βλ). Note that ζ 6= 0.
Relation (25) shows that

a | κ4(β
x − ζ),

where we can take κ4 to be some fixed positive integer which is divisible
by the norm of |αλ − βλ| with respect to IK. The same argument
(interchanging α with β) shows that

a | κ4(α
x − η),

where η = γ−1(βλ − 1)/(βλ − αλ). The fact that η 6= 0 follows because
β 6= ±1 and λ 6= 0. Furthermore, both αx − η and βx − ζ are nonzero.
Hence,

a � NIK (gcd(αx − η, βx − ζ)) ,

where the last expression is to be interpreted as the norm of the ideal
greatest common divisor of the two algebraic numbers in IK (see also
[20]). Since α and β are multiplicatively independent, the Main The-
orem from [5, p. 205] shows that a = exp(o(x)) as x → ∞. This
contradicts Lemma 4 for large values of x.

Suppose now that y − 2x = λ for some fixed value of λ. We will get
the contradiction by a similar argument as in the first case. It follows

a | γαx + (δβx − 1) | (γαx)2 − (δβx − 1)2.
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Thus,

a | γ2α2x − δ2β2x + 2δβx − 1 and a | γα2x+λ + δβ2x+λ − 1.

Multiplying the first relation above by αλ, the second by γ, and sub-
tracting them, we get

a | β2xδ(γβλ + δαλ) − 2δαλβx + αλ − γ.

The last expression above is nonzero for large x. Indeed, this expression
is a polynomial of degree at most 2 in βx. If it were zero, then it must
happen that all three coefficients δ(γβλ + δαλ), −2δαλ and αλ − γ are
zero, which is not the case since δα 6= 0. Thus,

a | κ4P (βx),

where P (βx) is a nonzero monic polynomial of degree at most 2. In-
terchanging β to α in the previous argument, we get that

a | κ4Q(αx),

where Q(X) ∈ IK[X] is some nonzero polynomial of degree at most 2.
Hence, at the level of ideals,

a | κ4

∏

ζ,η
P (ζ)=0, Q(η)=0

NIL (gcd(βx − ζ, αx − η)) ,

where IL is the splitting field over IK of P (X)Q(X) and where the roots
ζ and η of P (X) and Q(X) in IL, respectively, are counted with their
multiplicities. If ζη 6= 0, then NIK(gcd(βx − ζ, αx − η)) = |α|o(x) as
x → ∞ by [6, Main Theorem, p. 205]. It remains to deal with the case
when one of ζ or η is zero. Assume say that ζ = 0. Let π be any prime
ideal dividing β in IK. All we need to understand is an upper bound
for µπ(a), where for a number ω ∈ IK we use µπ(ω) for the exponent of
π in the factorization of ω in prime ideals inside IK. If π divides also
α, then π does not divide ux − 1 for large x. Thus, µπ(a) = 0 in this
case. If π does not divide α, then

µπ(ux − 1) = µπ(γαx + δβx − 1) ≤ min{x, µπ(γαx − 1)}.

By linear forms in π-adic logarithms (see, for example, [21]),

µπ(γαx − 1) � log x.

Thus, for large x, µπ(a) ≤ µπ(ux − 1) � log x. A similar argument
applies to the ideals dividing α. This argument shows that the roots
ζη = 0 contribute a factor of size |α|O(log x) = |α|o(x) as x → ∞ in a.
Consequently,

a ≤ |α|o(x)

holds as x → ∞, contradicting again Lemma 4.
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The same argument works also in the case z − 2x = O(1), the role
of a being played by b. We give no further details.

6. The case α and β multiplicatively dependent

We begin with some remarks about the case when α and β are mul-
tiplicatively dependent. Since they are also either rational or quadratic
integers, there exist ρ > 1, coprime integers i > 0 and j, and η ∈ {±1},
such that α = ρi and β = ηρj. If j ≥ 0, then ρ is a rational integer.
Otherwise, i = 1, j = −1, and ρ is a quadratic unit.

Observe now that if j ≥ 0, then

un − 1 = γ(ρn)i + ηnδ(ρn)j − 1

is a polynomial in ρn when η = 1, and one of two polynomials when
η = −1 according to whether n is even or odd. When j = −1, then

un = ρ−n(γ(ρn)2 − ρn + ηnδ)

is associated (because ρ−n is a unit) to one (if η = 1), or one of the two
(if η = −1) polynomials of degree 2 in ρn with coefficients in IK. The
following result is very important in what follows.

Lemma 5. All solutions (x, y, z) of equation (2) are contained in the

union of finitely many lines in ZZ3.

Proof. We let b1 and c1 be the largest divisors of b and c, respectively,
which are free of primes dividing ρ. Note that both b/b1 and c/c1 are
O(1). Indeed, if j > 0, then ρ > 1 ∈ ZZ and un − 1 is coprime to ρ
for all n sufficiently large. If j < 0, then ρ is a unit, so b1 = b and
c1 = c. Finally, if j = 0, then, since δβz 6= 1 and δβy 6= 1, we get that
δβz − 1 = O(1) and δβy − 1 = O(1) are both nonzero.

This justifies that b/b1 = O(1) and c/c1 = O(1).
We now fix the class of (x, y, z) modulo (ZZ/2ZZ)3. For j ≥ 0, we may

write

bc = uz − 1 = γP (ρz) = γ
∏̀

i=1

(ρz − µi)
σi ,

ac = uy − 1 = γQ(ρy) = γ
`′
∏

j=1

(ρy − µ′
j)

σ′

` .

In the above formulae, µ1, . . . , µ` are all the distinct roots of P (X) hav-
ing multiplicities σ1, . . . , σ`, respectively. Similarly, µ1, . . . , µ`′ are the
distinct roots of Q(X) of multiplicities σ′

1, . . . , σ
′
`′ , respectively. Note
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that µ1, . . . , µ`, µ
′
1, . . . , µ

′
`′ are all nonzero. Note also that P (X) and

Q(X) have degrees i. When j < 0, then we write

bc = uz − 1 = γρ−zP (ρz), and ac = uy − 1 = γρ−yQ(ρy),

where now P (X) and Q(X) are quadratic polynomials. We keep the
notations µi, σi and µ′

j, σ′
j with 1 ≤ i ≤ `, 1 ≤ j ≤ `′ for the dis-

tinct roots with their corresponding multiplicities of P (X) and Q(X),
respectively.

In all cases, we put d for the common degree of P (X) and Q(X).
We now write σ = max{σi, σ

′
j : 1 ≤ i ≤ `, 1 ≤ j ≤ `′}, IL for

the splitting field of P (X)Q(X) over IK, and κ5 for a positive integer
divisible by the denominators of γ, µi and µ′

j for all 1 ≤ i ≤ ` and
1 ≤ j ≤ `′. We then get that

c1 | gcd(uz − 1, uy − 1) | gcd(γP (ρz), γQ(ρy))

| κd3+1
5 γ

∏

1≤i≤s
1≤j≤t

gcd
(

ρz − µi, ρ
y − µ′

j

)σ
.(26)

The last product above is to be interpreted as a product of ideals in IL.
Now let T > 2 be a large positive integer. Consider the set of

numbers T = {pz + qy : 1 ≤ p ≤ T, 1 ≤ q ≤ T}. Clearly, all
numbers in T are ≤ 2zT for large z. Since there are T 2 pairs of
positive integers (p, q) ∈ [1, T ]2, it follows, by the pigeon hole principle,
that there there exist (p, q) 6= (p′, q′) such that |pz + qy− (p′z + q′y)| ≤
2Tz/(T 2 − 1) < 3z/T . Write u = p − p′ and v = q − q′ and assume
that uz + vy ≥ 0 (otherwise, we replace the pair (u, v) by the pair
(−u,−v)). For 1 ≤ i ≤ ` and 1 ≤ j ≤ `′, put c1,i,j for the ideal
gcd(c1, ρ

z − µi, ρ
y − µ′

j) in IL. Since

ρz ≡ µi (mod c1,i,j) and ρy ≡ µ′
j (mod c1,i,j),

and ρ is invertible modulo c1, we get that ρuz+vy ≡ µu
i µ

′v
j (mod c1,i,j).

We thus get, using relation (26), that

(27) c1 | κ
T (d3+1)
5 γ

∏

1≤i≤`
1≤j≤`′

(

ρuz+vy − µu
i µ

′v
j

)

.

Assume that the right hand side above is nonzero. Then, taking norms
in IL and using the fact that 0 ≤ uz + vy � z/T , we get that

c1 ≤ exp(O(z/T + T )).

The constant implied by the above O depends on the sequence (un)n≥0.
Since c1 � c � αz/2, we get that

αz/2 ≤ exp(O(z/T + T )),
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therefore z � z/T + T . This inequality is false if we first choose
T > 2κ−1

6 , where κ6 is the constant implied by the above O, and then
make z large. The contradiction comes from the fact that we have
assumed that the right hand side of (27) is nonzero for T = bκ−1

6 c + 1
once z is large. If the right hand side of (27) is zero with this value for
T , then ρuz+vy = µu

i µ
′v
j for some i, j, u, v, and since ρ is not a root of

1, we get that uz + vy is uniquely determined once i, j, u, v have been
fixed.

We now repeat the argument but with x instead of y and with b
instead of c. The similar argument leads to the conclusion that un-
less some equality of the form ρu′z+v′y = µu′

i µ′′v′

j holds with some in-
tegers u′, v′ of absolute values at most T ′ and not both zero, then
b ≤ exp(O(z/T ′ + T ′)). Here, µ′′

1, . . . , µ
′′
`′′ are the roots of the polyno-

mial R(X) such that ux − 1 is associated to γR(ρx) in the same way as
uz − 1 and uy − 1 were associated to γP (ρz) and γQ(ρy), respectively.
Since b � α(1−κ0)z for some constant κ0 ∈ (0, 1), we get again that
z � z/T ′ + T ′, which is a contradiction if T ′ is first chosen to be suf-
ficiently large, and then z is allowed to be large. In conclusion, there
must exist a relation of the form ρu′z+v′x = µu′

i µ′′v′

j , with exponents
u′, v′ of sizes O(1), which are not both zero, leading again to the fact
that u′z + v′x = O(1). Since we also have uz + vy = O(1), we get that
(x, y, z) belongs to one of finitely many effectively computable lines in
ZZ3. ut

Since we have infinitely many solutions (x, y, z) and only finitely
many possibilities for the lines in ZZ3 on which they might lie, it follows
that infinitely many of the x, y and z are of the form

x = d1t + e1, y = d2t + e2, z = d3t + e3,

where d1, d2, d3, e1, e2, e3 are fixed integers with the first three positive
and t is a positive integer which may be arbitrarily large. Note that
d3 ≥ d2 ≥ d1 > 0. We may also fix the parity of t, therefore the signs
of βx, βy, βz are all determined by η and the parities of e1, e2 and e3.
We now distinguish the following cases.

6.1. The case j > 0. This is the easiest case. We have

ab = ux − 1 = (γαie1)(ρt)id1 + ζ1(δρ
je1)(ρt)jd1 − 1,

ac = uy − 1 = (γαie2)(ρt)id2 + ζ2(δρ
je2)(ρt)jd2 − 1,

bc = uz − 1 = (γαie3)(ρt)id3 + ζ3(δρ
je3)(ρt)jd3 − 1,

where ζi = ηei ∈ {±1} for i = 1, 2, 3. Multiplying the three relations
above we get a polynomial with rational coefficients in ρt which is a
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perfect square for infinitely many values of t. Since 0 is not a root
of this polynomial (in fact, its constant term is −1), it follows easily
that this polynomial must be the perfect square of a polynomial with
rational coefficients (see, for example, [15, Criterion 1]). However, this
is impossible because its constant term is −1, which is not a perfect
square.

6.2. The case j = 0. In this case, i = 1 and we have

ab = ux − 1 = γ1(ρ
t)d1 + δ1,

ac = uy − 1 = γ2(ρ
t)d2 + δ2,

bc = uz − 1 = γ3(ρ
t)d3 + δ3,

where δ1, δ2, δ3 ∈ {−δ−1, δ−1} are nonzero and γi = γρei for i = 1, 2, 3.
Let us put Pi(X) = γiX

di + δi. Then

a | gcd(P1(ρ
t), P2(ρ

t)), b | gcd(P1(ρ
t), P3(ρ

t)), c | gcd(P2(ρ
t), P3(ρ

t)).

We now look at gcd(Pi(X), Pj(X)) for i 6= j. The roots of Pi(X) in C
are e2πiµ/diηi, for µ = 0, 1, . . . , di−1, where ηi is any fixed determination
of (−δi/γi)

1/di . It now follows easily that gcd(Pi(X), Pj(X)) is a poly-
nomial of degree at most gcd(di, dj). In particular, gcd(P3(X), P1(X))·
gcd(P3(X), P2(X)) is a polynomial of degree at most gcd(d3, d3) +
gcd(d3, d2). Since

P3(ρ
t) = bc | gcd(P1(ρ

t), P3(ρ
t)) gcd(P2(ρ

t), P3(ρ
t))

holds for infinitely many positive integers t, we get that d3 ≤ gcd(d3, d1)
+ gcd(d3, d2). Since d1 ≤ d2 ≤ d3, the above inequality shows that
either d3 = d2, or d1 = d2 = d3/2. We treat only the case d1 = d2,
since the case when d2 = d3 is similar. Since d1 = d2 and y > x, we
get that e2 > e1. Putting d = d1, we get that P1(X) is associated
to Xd + δ1/γ1 and P2(X) is associated to Xd + δ2/γ2. They have a
common root if and only if δ1/γ1 = δ2/γ2. This leads to ρe2−e1 = δ2/δ1.
If δ2 = δ1, then e2 = e1, therefore x = y, which is a contradiction. This
shows that δ2 6= δ1, therefore δ2/δ1 equals either (δ − 1)/(−δ − 1), or
(−δ − 1)/(δ − 1). Changing δ to −δ, if necessary, we may assume that

ρe2−e1 = −
δ − 1

δ + 1
.

Since ρ is an integer, we get that 1 + δ | δ − 1, therefore 1 + δ | 2.
Thus, 1 + δ = −2,−1, 1, 2. The cases 1 + δ = −2, −1, 2 give ρe2−e1 =
−2, −3, 0, respectively, which are impossible because ρ is positive,
while the case 1 + δ = 1 gives δ = 0, which is not allowed. This
completes the analysis of the case when j = 0.
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6.3. The case j = −1. This is by far the most technical one. In this
case, we have that

ux − 1 = γρx+e1((ρt)2d1 − γ1(ρ
t)d1 + δ1),

uy − 1 = γρy+e2((ρt)2d2 − γ2(ρ
t)d2 + δ2),

uz − 1 = γρz+e3((ρt)2d3 − γ3(ρ
t)d3 + δ3),

where γi = γ−1ρ−ei , δi = ηiδγ
−1ρ−2ei and ηi = ηei ∈ {±1} for i = 1, 2, 3.

We put

Pi(X) = X2di − γiX
di + δi = Qi(X

di) for all i = 1, 2, 3,

where Qi(X) = X2 − γiX + δi for i = 1, 2, 3. Note that P (ρt) =
∏3

i=1 Pi(ρ
t) is associated to a perfect square in IK for infinitely many

t. Since P (X) =
∏t

i=1 Pi(X) does not have zero as a root, it follows,
again by [15, Criterion 1], that P (X) is a square of a polynomial in
IK[X]. In particular, all roots of P (X) have even multiplicities.

We now fix i ∈ {1, 2, 3} and take a closer look at Pi(X). Let zi,1 and
zi,2 be the roots of Qi(X). Since Pi(X) = Qi(X

di), it follows that all

roots of Pi(X) are e2πi`/diz
1/di

i,j for ` = 0, 1, . . . , di−1 and j = 1, 2, where

z
1/di

i,1 and z
1/di

i,2 are two fixed determinations of these complex nonzero
numbers. Thus, if Pi(X) has a double root, then it must be the case

that e2πi`/diz
1/di

i,1 = e2πi`′/diz
1/di

i,2 for some `, `′ ∈ {0, 1, . . . , di − 1}. Upon
exponentiating this last relation to the power di, we get zi,1 = zi,2.
Thus, Qi(X) has a double root. This happens if and only if γ2

i −4δi = 0,
which leads to ηeiγδ = 1/4. Furthermore, if this is the case, then
zi,1 = zi,2 = γi/2 is an algebraic integer and Pi(X) = (Xdi − γi/2)2 is
the square of a polynomial whose coefficients are algebraic integers in
IK.

6.3.1. The case of double roots. Assume that Pi(X) has a double root
for some i ∈ {1, 2, 3}. Then writing {1, 2, 3} = {i, j, k}, we get, from
the fact that P (X) and Pi(X) are both squares of other polynomi-
als with coefficients in IK, that Pj(X)P`(X) is a square of a polyno-
mial with coefficients in IK. If Pj(X) has a double root, then again
zj,1 = zj,2 = γj/2 and Pj(X) = (Xdj − γj/2)2. This leads to the fact
that P`(X) is also the square of a polynomial with coefficients in IK,
therefore P`(X) = (Xd` − γ`/2)2.

Put R(X) =
∏3

i=1(X
di − γi/2). Thus, R(X) is monic and P (X) =

R2(X). For a fixed t even, we have that abc is associated in IK to
γ1/2R(ρt), where γ′ = γ1/2. Indeed, note that abc = γ3ρx+y+z+e1+e2+e3 ·
R2(ρt), and

x + y + z + e1 + e2 + e3 = t(d1 + d2 + d3) + 2(e1 + e2 + e3)
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is even, therefore γ ′ must be a member of IK. Since bc is associated to
γ2P3(ρ

t) = γ2((ρt)d3 − γ3/2)2, we have that a is associated to H(ρt),
where

H(X) = γ′γ−2 (Xd1 − γ1/2)(Xd2 − γ2/2)

(Xd3 − γ3/2)
.

We now show that H(X) is a polynomial. Assume that this is not
so and let H(X) = F (X)/G(X), where G(X) is of positive degree
and F (X) and G(X) are coprime. Then the algebraic integer G(ρt)
in IK divides the resultant ResX(F (X), G(X)) evaluated at X = ρt,
which is a nonzero algebraic integer in IK. Thus, G(ρt) is associated
to some element from a finite list in IK. However, since G(X) is of
positive degree and does not have zero as a root, this resulting Dio-
phantine equation has only finitely many positive integer solutions t.
In fact, by the classical theory of Diophantine equations (see [19], for
example), this Diophantine equation can be immediately reduced to
a unit equation in three terms in IK[(γ3/2)1/d3 ]. This contradiction
shows that H(X) is a polynomial, therefore that Xd3 − γ3/2 divides
(Xd1 −γ1/2)(Xd2 −γ2/2). The polynomials Xd3 −γ3/2 and Xdi −γi/2
can have at most gcd(d3, di) roots in common for i = 1, 2. Thus,
d3 ≤ gcd(d3, d1)+gcd(d3, d1). Since d3 ≥ d2 ≥ d1, it follows that either
d3 = d2, or d1 = d2 = d3/2. If d3 = d2, then by putting d = d3 and
using the fact that Xd − γ3/2 and Xd − γ2/2 have a root in common,
we also get γ3 = γ2, therefore ρe2 = ρe3 . Thus, z = y which is not
allowed. Finally, if d1 = d2, then using the fact that also Xd1 − γ1/2
and Xd2 − γ2/2 have a root in common (because a becomes arbitrarily
large), we get that γ1 = γ2, therefore e1 = e2, leading to x = y, which
is again not allowed.

We now return to the situation where Pi(X) = (Xdi − γi/2)2 but
Pj(X) does not have a double root. Then P`(X) does not have a
double root either, and since Pj(X)P`(X) is a square, we get that
Pj(X) = P`(X). By identifying degrees and coefficients, we get dj = d`

and γj = γ`. The last equation implies that ρej = ρe`; hence, ej = ej.
Since (dj, ej) = (d`, e`), we get again that the two of the three variables
{x, y, z} corresponding to j and ` are equal, which is impossible.

6.3.2. Bounding the number of common roots. From now on, we can
assume that all three polynomials P1(X), P2(X) and P3(X) have only
simple roots. We look at

P3(X) = (Xd3 − z3,1)(X
d3 − z3,2),
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and count the number of common roots that P3(X) can have with
Pi(X) for some i = 1, 2. Let

Pi(X) = (Xdi − zi,1)(X
di − zi,2).

Note that both P3(X) and Pi(X) are product of two binomial poly-
nomials. Our aim is to show that P3(X) has ≤ 2 gcd(d3, d1) roots in
common with each of Pi(X) for i = 1, 2.

Assume say that z3,1/z3,2 is not a root of 1. Suppose that zi,1/zi,2 is
not a root of 1 either. Then, since all roots of Xd3 −z3,1 differ one from
another multiplicatively by roots of unity, it follows that if Xd3 − z3,1

has a root in common with Xdi − zi,j, then it will not have a root in
common with Xdi − zi,`, where {j, `} = {1, 2}. Thus, in this case there
exists at most one j ∈ {1, 2} such that Xd3 − z3,1 has a common root
with Xdi − zi,j, and clearly the number of such roots is ≤ gcd(d3, di).
Hence, Xd3 − z3,1 has at most gcd(d3, di) common roots with Pi(X).
The same is true for Xd3 − z3,2. Hence, in this case the number of
common roots of P3(X) and Pi(X) is ≤ 2 gcd(d3, di).

Assume now that still z3,1/z3,2 is not a root of 1, but that zi,1/zi,2 is
a root of 1. If each of Xd3 − z3,i for i = 1, 2 has common roots with at
most one of the two binomials Xdi − zi,j for j = 1, 2, then the above
argument shows again that the number of common roots of P3(X) and
Pi(X) is at most 2 gcd(d3, di). If say Xd3 − z3,1 has common roots with
both Xdi − zi,1 and Xdi − zi,2, then it has at most gcd(d3, di) common
roots with each one of them, while Xd3 − z3,2 does not have common
roots neither with Xdi−zi,1, nor with Xdi−di,2, since otherwise z3,1/z3,2

will end up being a root of 1, which is not the case. Hence, again P3(X)
and Pi(X) have at most 2 gcd(d3, di) roots in common.

Assume next that z3,1/z3,2 is a root of 1, but that zi,1/zi,2 is not. If
both Xd3 − z3,1 and Xd3 − z3,2 have common roots with Pi(X), then
these common roots will be roots of Xdi − zi,j for the same value of j.
Thus, each of Xd3 − z3,1 and Xd3 − z3,2 will have at most gcd(d3, di)
common roots with Xdi −zi,j (and none common with Xdi −zi,`, where
` is such that {j, `} = {1, 2}), so again P3(X) and Pi(X) have at most
2 gcd(d3, di) roots in common. Of course, if only one of Xd3 − z3,j

for j = 1, 2 has common roots with Pi(X), then again it will have
common roots with only one of Xdi − zi,` for ` = 1, 2, and the number
of such is ≤ gcd(d3, di), so in this case P3(X) and Pi(X) have at most
gcd(d3, di) < 2 gcd(d3, di) common roots.

So far, we have always obtained that P3(X) and Pi(X) have at most
2 gcd(di, d3) roots in common.

Assume now finally that both z3,1/z3,2 and zi,1/zi,2 are roots of 1.
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Note that (zi,1γρei , zi,2γρei) are the roots of X2 − X + ηeiγδ, and
γδ ∈ Q∗ because γ and δ are conjugates in IK. Thus, while zi,1, zi,2

might belong to a quadratic field over IK (hence, a field of degree 4
over Q), their ratio belongs to a quadratic field. Thus, if zi,1/zi,2 6= 1
is a root of 1, then its order is one of 2, 3, 4, or 6. Note next that the
order cannot be 2 (i.e., zi,1 = −zi,2), because the coefficient of X in
the quadratic polynomial X2 − X + ηeiγδ is not zero. Hence, zi,1/zi,2

is a root of unity of order 3, 4, or 6. One checks easily that zi,1/zi,2 is a
root of 1 of orders 3, 4, 6, respectively, if and only if ηeiγδ = 1, 1/2, or
1/3, respectively. Since we are discussing the case when both z3,1/z3,2

and zi,1/zi,2 are roots on unity, we deduct that either η = 1, or η = −1
and ei ≡ e3 (mod 2), and in any case these two roots of unity have the
same order. Let this order be k ∈ {3, 4, 6}, and put ε = e2πi/k.

If each of Xd3 − z3,1 and Xd3 − z3,2 has common roots with at most
one of two polynomials Xdi − zi,1 and Xdi − zi,2, then the previous
argument shows that P3(X) and Pi(X) have at most 2 gcd(d3, di) roots
in common. Further, if at most one of the two polynomials Xd3 − z3,1

and Xd3 − z3,2 has common roots with Pi(X), then again the previous
argument shows that the number of common roots of P3(X) and Pi(X)
is at most 2 gcd(d3, di).

We now look at the remaining cases. Here, we shall show that the
number of common roots of P3(X) and Pi(X) is < d3.

We start by noting that up to relabeling the roots of Pi(X), we may
assume that zi,1 = zi, that zi,2 = ziε, and that Xd3 −z3,1 has a root η in
common with Xdi − zi, and another root η′ in common with Xdi − ziε.
Certainly, z3,2 = z3,1ε

±1, and Xd3 − z3,2 has a root in common with at
least one of Xdi − zi or Xdi − ziε.

Since Xd3 − z3,1 has a root in common with Xdi − zi, we get that
there is a number ν such that νd3 = z3,1 and νdi = zi. Thus,

Pi(X) = (Xdi − νdi)(Xdi − νdiε).

Since Xd3 − νd3 has also a root in common with Xdi − νdiε, it follows
that for some integers j and ` we have

νe2πij/d3 = νe2πi/(kdi)+2πi`/di .

Thus,
1

kdi
∈

`

di
−

j

d3
+ ZZ,

implying that lcm[d3, di] is a multiple of kdi. Thus, kdi ≤ lcm[d3, di] =
d3di/ gcd(d3, di), giving gcd(d3, di) ≤ d3/k.

Suppose first that Xd3 − z3,2 does not have a common root with
both of Xdi − zi and Xdi − ziε. Then P3(X) and Pi(X) have at most



28 C. FUCHS, F. LUCA, AND L. SZALAY

3 gcd(d3, di) ≤ 3d3/k roots in common. Note that 3d3/k ≤ d3. Thus,
P3(X) and Pi(X) have at most d3 roots in common. Let us show that in
fact the inequality is strict. From the above arguments, the inequality
is strict unless k = 3 and gcd(d3, di) = d3/3. Put gcd(d3, di) = λ.
Then d3 = 3λ and di ∈ {λ, 2λ}. If di = λ, then Pi(X) has a totality of
2λ < d3 roots, and we obtain a contradiction. Thus, di = 2λ. Hence,

P3(X) = (X3λ−ν3λ)(X3λ−ν3λε±1), Pi(X) = (X2λ−ν2λ)(X2λ−ν2λε).

However, it is now easy to see that X3λ−ν3λε±1 cannot have a common
root with Pi(X). Indeed, any such common root x will satisfy x3λ =
ν3λε±1 and either x2λ = ν2λ (leading to ν6λε±2 = x6λ = ν6λ, which is
false since ε±2 6= 1), or x2λ = ν2λε (leading to ν6λε±2 = x6λ = ν6λε3,
which is again false since ε3 = 1 and ε±2 6= 1).

So, it remains to treat the case when also Xd3 − z1,3ε
±1 has a root in

common with both Xdi−zi and Xdi−ziε. With the previous notations,
since Xd3 − νd3ε±1 and Xdi − νdi have a root in common, we get that
for some integers j and ` we have νe±2πi/(kd3)+2πij/d3 = νe2πi`/di . This
leads to

±
1

kd3
∈

`

di
−

j

d3
+ ZZ,

so lcm[d3, di] is a multiple of kd3. Thus, kd3 ≤ lcm[d3, di], leading to
gcd(d3, di) ≤ di/k. In particular, di 6= d3. Write λ = gcd(d3, di). Then
di ≥ kλ, therefore d3 ≥ (k + 1)λ. Thus, λ ≤ d3/(k + 1). Since P3(X)
and Pi(X) have at most 4λ roots in common anyway, we get that the
number of common roots of these two polynomials is ≤ 4d3/(k + 1) ≤
d3. Equality is obtained if and only if k = 3 and d3 = 4λ. Clearly, di

cannot be λ (otherwise Pi(X) and P3(X) will have at most 2di ≤ 2λ <
d3 roots in common), and di 6= 2λ, for otherwise λ = gcd(d3, di) = 2λ,
which is a contradiction. So, it must be the case that di = 3λ. Hence,

P3(X) = (X4λ−ν4λ)(X4λ−ν4λε±1), Pi(X) = (X3λ−ν3λ)(X3λ−ν3λε).

Note now that the second factor of Pi(X) above cannot have a common
root x with the first factor of P3(X) above, for if not, we would have
ν12λ = x12λ = ν12λε4, therefore ε4 = 1, which is false.

Having covered all the possibilities, we get that P3(X) has < d3

common roots with Pi(X). If this is true for both i, j ∈ {1, 2}, it
follows that there is a root of P3(X) which is not a root of P1(X)P2(X),
and this is a contradiction because P1(X)P2(X)P3(X) has the property
that all its roots are double.

So, there could be at most one i ∈ {1, 2} such that P3(X) has com-
mon < d3 common roots with Pi(X), and for j 6∈ {i, 3}, P3(X) and
Pj(X) have at most 2 gcd(d3, dj) roots in common. If gcd(d3, dj) 6= d3,
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it follows that gcd(d3, dj) ≤ d3/2, so P3(X) has < 2d3 roots in com-
mon with P1(X)P2(X), which is false. So, it must be the case that
gcd(d3, dj) = d3, so dj = d3. Write d = d3. Thus,

P3(X) = (Xd − z3,1)(X
d − z3,2), Pj(X) = (Xd − zj,1)(X

d − zj,2).

But it is clear that if the above polynomials have more than d roots in
common, then they will have all roots in common so they will coincide.
In particular, d3 = dj and γ3 = γj, leading to e3 = ej, so we get again
the contradiction that two of the positive integer unknowns x, y and z
are equal. Hence, P3(X) and Pj(X) have at most d3 roots in common,
therefore P3(X) and P1(X)P2(X) have less than 2d3 roots in common,
which is false.

In conclusion, it must be the case that P3(X) has ≤ 2 gcd(d3, di) roots
in common with each of Pi(X) for i = 1, 2. Thus, 2d3 ≤ 2 gcd(d3, d1)+
2 gcd(d3, d2), therefore either d2 = d3, or d1 = d2 = d3/2. Assume that
d1 = d2 = d3/2. Then P3(X) has at most d3 roots in common with each
of P1(X) and P2(X). Since all its roots are common to either P1(X)
or P2(X), we get that P3(X) and P1(X)P2(X) are monic and have
the same roots which are all simple for each of these two polynomials.
Hence, P3(X) = P1(X)P2(X). Evaluating this in X = ρt with large t,
we get that a = O(1), which is a contradiction.

6.3.3. The case d1 < d2 = d3. Let d = d2 = d3. Then the two polyno-
mials

P3(X) = (Xd − z3,1)(X
d − z3,2), P2(X) = (Xd − z2,1)(X

d − z2,3)

cannot have more than d root in common, for otherwise, by an argu-
ment already used before, we would get that they coincide, therefore
z = y, which is a contradiction. Thus, P3(X) and P2(X) have exactly
d roots in common, therefore P3(X) and P1(X) also have d roots in
common. Since the number of such roots is ≤ 2 gcd(d3, d1), we get
that either d1 = d, or d1 = d/2. Assume that d1 = d/2. Then P1(X)
divides P3(X). Furthermore, up to relabeling the roots of Q2(X), it fol-
lows that we may assume that gcd(P3(X), P2(X)) = Xd − z2,1. Then
P1(X)P2(X)P3(X) = P1(X)2(Xd − z2,1)

2(Xd − z2,2), and since this
must be the square of a polynomial with coefficients in IK, we get that
Xd − z2,2 is a square of a polynomial with coefficients in IK, and this
is false again.

6.3.4. The case d = d1 = d2 = d3. It now follows immediately that
Q1(X)Q2(X)Q3(X) must be a perfect square of a polynomial of degree
3 with coefficients in IK[X]. Furthermore, Qi(X) and Qj(X) have
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precisely one root in common for all i 6= j ∈ {1, 2, 3}. We now analyze
this last situation.

Assume first that either η = 1, or η = −1 but that e1, e2, e3

are all congruent modulo 2. Let us write u and v for the roots of
X2 − X + ηeγδ, where the value of e modulo 2 is congruent to ei (i =
1, 2, 3) in case η = −1. It then follows that Qi(X) has roots uγ−1ρ−ei

and vγ−1ρ−ei. Note that since Qi(X) ∈ IK[X] for all i ∈ {1, 2, 3}, and
any two of them have precisely one root in common, it follows that
u, v ∈ IK. Furthermore, since u/v 6= ±1, and IK is real, it follows, up
to interchanging u and v, that we may assume |u| > |v|. Since the root
uγ−1ρ−ei is also a root of Qj(X) for some j ∈ {1, 2, 3}\{i}, we get that
either uγ−1ρ−ei = uγ−1ρ−ej , leading to ei = ej, therefore two of the
positive integer unknowns x, y and z are equal, which is impossible,
or for each i there is j 6= i such that uγ−1ρ−ei = vγ−1ρ−ej . Thus,
u/v = ρei−ej , and since |u| > |v| and ρ > 1, we get that ei > ej. Thus,
for each i ∈ {1, 2, 3}, there is j 6= i in the same set such that ei > ej.
This is of course impossible because there must be some index i such
that ei = min{ej : j ∈ {1, 2, 3}}.

Finally, we assume that η = −1 and that not all ei are congru-
ent modulo 2 for i = 1, 2, 3. Thus, there are two of them, say i
and j such that ei ≡ ej (mod 2), and the third one ` is such that
e` 6≡ ei (mod 2). Let e ≡ ei (mod 2), and we assume that u and
v are the roots of X2 − X + (−1)eγδ, and that u1 and v1 are the
roots of X2 − X − (−1)eγδ. An argument used previously shows
that u, v, u1, v1 are all in IK. In particular, they are real. Then the
pairs of roots of Qi(X), Qj(X) and Q`(X) are (uγ−1ρ−ei, vγ−1ρ−ei),
(uγ−1ρ−ej , vγ−1ρ−ej), and (u1γ

−1ρ−e`, v1γ
−1ρ−e`), respectively. Up to

interchanging u and v, we may assume that uγ−1ρ−ei is also a root
of Qj(X). If uγ−1ρ−ei = uγ−1ρ−ej , we then get again ei = ej, which
leads again to the conclusion that two of the three positive integer
unknowns x, y and z coincide, which is false. Thus, uγ−1ρ−ei =
vγ−1ρ−ej , so u/v = ρei−ej . In particular, (−1)eδγ = uv = v2(u/v) =
v2ρei−ej is a positive number. Now each of the roots of Q`(X) is also
a root of Qi(X) or Qj(X). In particular, u1γ

−1ρ−e` = w1γ
−1ρ−em and

v1γ
−1ρ−e` = w2γ

−1ρ−en , where w1, w2 ∈ {u, v}, and m, n ∈ {i, j}.
Hence, (−1)e+1δγ = u1v1 = w1w2ρ

2e`−em−en, but this last number is
positive since ρ > 1 and w1w2 ∈ {u2, v2, uv}. This contradicts the fact
that (−1)eγδ > 0, and completes the proof of Theorem 1.
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École Norm. Sup. (4) 38 (2005), 76–92.
[7] A. Dujella, There are only finitely many Diophantine quintuples, J. reine

angew. Math. 566 (2004), 183–214.
[8] A. Dujella, Diophantine m-tuples, webpage available under http://

web.math.hr/∼duje/dtuples.html
[9] C. Fuchs, An upper bound for the G.C.D. of two linear recurring sequences,

Math. Slovaca 53 (2003), 21–42.
[10] C. Fuchs, Diophantine problems with linear recurrences via the Subspace The-

orem, Integers: Electronic Journal of Combinatorial Number Theory 5 (2005),
#A08.

[11] C. Fuchs, Polynomial-exponential equations involving multirecurrences, Stu-
dia Sci. Math. Hungar., to appear.

[12] C. Fuchs – A. Scremin, Polynomial-exponential equations involving several

linear recurrences, Publ. Math. Debrecen 65 (2004), 149–172.
[13] F. Luca, On shifted products which are powers, Glas. Mat. Ser. III 40 (2005),

13–20.
[14] F. Luca, On the greatest common divisor of u−1 and v−1 with u and v near

S-units, Monatsh. Math. 146 (2005), 239–256.
[15] F. Luca – T. N. Shorey, Diophantine equations with products of consecutive

terms in Lucas sequences, II, Acta Arith., to appear.
[16] F. Luca – L. Szalay, Fibonacci Diophantine triples, Preprint, 2007.
[17] H. P. Schlickewei – W. M. Schmidt, Linear equations in members of

recurrence sequences, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 20 (1993),
219–246.

[18] W. M. Schmidt, Linear Recurrence Sequences and Polynomial-Exponential

Equations, In: “Diophantine Approximation, Proc. of the C.I.M.E. Conference,
Cetraro (Italy) 2000”, F. Amoroso – U. Zannier (eds.), Springer-Verlag, LN
1819, 2003, pp. 171–247.

[19] T. N. Shorey – R. Tijdeman, “Exponential Diophantine Equations”, Cam-
bridge Univ. Press, Cambridge, 1986.

[20] J. Silverman, Generalized greatest common divisors, divisibility sequences,

and Vojta’s conjecture for blowups, Monats. Math. 145 (2005), 333–350.
[21] K. R. Yu, p-adic logarithmic forms and group varieties, II, Acta Arith. 89

(1999), 337–378.
[22] U. Zannier, “Some applications of Diophantine Approximation to Diophan-

tine Equations (with special emphasis on the Schmidt Subspace Theorem)”,
Forum, Udine, 2003.

[23] U. Zannier, Diophantine equations with linear recurrences. An overview of
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