ON THE DIOPHANTINE EQUATION G, (z) = Gn(P(z))
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ABSTRACT. Let K be a field of characteristic 0 and let p,q, Go, G1, P €
K][z],deg P > 1. Further let the sequence of polynomials (Gn(z))52¢ be
defined by the second order linear recurring sequence
Gry2(z) = p(2)Grti(z) + q(z)Gr(z), forn >0.
In this paper we give conditions under which the diophantine equation
Gn(z) = Gm(P(x)) has at most exp(10'®) many solutions (n,m) €
Z% n,m > 0. The proof uses a very recent result on S-unit equations
over fields of characteristic 0 due to J.-H. Evertse, H. P. Schlickewei and
W. M. Schmidt (cf. [14]). Under the same conditions we present also
bounds for the cardinality of the set
{(m,n) € N|m # n,3c € K\{0} such that G, (z) = c G (P(z))}.

In the last part we specialize our results to certain families of orthogonal
polynomials.

1. INTRODUCTION

Let K denote a field of characteristic 0. There is no loss of generality in
assuming that this field is algebraically closed and we will assume this for the
rest of the paper. Let p, g, Go, G1 € K[z] and let the sequence of polynomials
(Gn(z))5%, be defined by the second order linear recurring sequence

(1) Gni2(2) = p(2)Gnii(2) + ¢(2)Gn(z), for n>0.

By a(z),a(z) we denote the roots of the corresponding characteristic
polynomial

(2) T? = p(2)T — gq(2).

Let A(z) = p(x)?+4q(z) be the discriminant of the characteristic polynomial
of the recurring sequence (G, (z))52,. Then we have

T Az z) — Az
o) = P VEET ) ple) = VA
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We will always assume that the recurring sequence is simple, which means
that A(z) # 0. Then for n >0

(3) Gn(z) = g1(x)a(z)" + ga(x)a(x)",

where

4)  gi(z) =

G1(z) — Go(z)a(z) and g¢o(x) =
)

a(z) —a(z

~—

Notice that

91,92 € K(z, V/p(z)? + 4q(z)) = K(z, V A(z))-

Therefore, we have

6 (a) — C10) —Go()a(x)

alz)" +

a(z) —a(z)

(Gn(z))52, is called nondegenerate, if the quotient a@(z)/a(z) is not a
root of unity.

Many diophantine equations involving the recurrence (Gp(z))52, were
studied previously. For example let us consider the equation

(5) Gn(z) = s(z),

where s(z) € K|[z] is given. We denote by N(s(z)) the number of integers
n for which (5) holds. Schlickewei [19] established an absolute bound for
N(s(z)), provided that the sequence is nondegenerate and that also a,@
are not equal to a root of unity. His bound was substantially improved by
Beukers and Schlickewei [2] who showed that

N(s(r)) <61.

In the particular case that not all algebraic functions
g1(z)/s(z),g2(x)/s(z), a(z),a(z) are constants (which will always be
the case in our paper), Beukers and Tijdeman (cf. Theorem 2 on p. 206 in
[3]) showed that

N(s(z)) < 3.
Very recently, Schmidt [20] obtained the remarkable result that for arbitrary

nondegenerate complex recurring sequences of order ¢ one has N(a) < C(q),
where a € C and C(q) depends only (and in fact triply exponentially) on q.

Another kind of result is due to Glass, Loxton and van der Poorten [15].
They showed that, if (G,(z))72, is nonperiodic and nondegenerate, then
there are only finitely many pairs of integers m,n with m > n > 0 and

(6) Gn(z) = Gp(x).



ON THE EQUATION Gy (z) = Gm(P(z)) 3

In a recent paper Dujella and Tichy [8] showed for linear recurring se-
quences Gp11(x) = 2Gr(x)+ BGp-1(z), Go(z) =0, Gi(z) =1 of polyno-
mials with B € Z\{0} that there does not exist a polynomial P(z) € C[z]
satisfying
(7) Gn(z) = Gm(P(2))

(for all m,n > 3, m # n). Applying a general theorem of Bilu and Tichy [4],
this result was used to show that the diophantine equation Gy, (z) = Gy, (y)
has only finitely many solutions in integers n,m, z,y, with n # m.

It is the aim of this paper to present suitable extensions of the results
(5) and (7).

2. GENERAL RESULTS

Our first main result is a generalization of (6) to the diophantine equation
(8) Gn(z) = G (P(2)),

where P € K[z] is an arbitrary polynomial of degree > 1. We show that
under certain hypotheses, the number of pairs (n,m) with (8) is bounded
above by an absolute constant.

Theorem 1. Let p,q,Go,G1,P € K[z], deg P > 1 and (Gn(2))52, be de-
fined as above. Assume that the following conditions are satisfied: 2degp >
degq > 0 and

degGy > degGo+degp>0, or
degG; < degGy+ degq — degp.

Then there are at most min{exp(18'%),C(p,q, P)} pairs of integers (n,m)
with n,m > 0, n # m such that

Cu(2) = Grn(P(a))
holds. We have
C(p,q, P) = 10% - log(2C; deg p) - (4e)3C1 de8a . 74C1 degq
where Cy = 2(deg P + 1).
Remark 1. If deg P = 1 then Theorem 1 does not remain valid if we allow

m=n.

Remark 2. This example shows that also in the polynomial case the con-
dition 2degp > degq is needed. Assume that

Go(z) =1, Gi(z) ==z,
z z?
Gni2(z) = §Gn+1($) + 7Gn($)'
Here we have
2degp =degqg =2 and degGy =0,degG; = 1.
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It follows that

Gn(z) =z" Vn.
In this case the following equation holds

ng(-’ﬂ) = Gn(372)

for all integers n.

Remark 3. Let us consider the Chebyshev polynomials of the first kind,
which are defined by

Ty (z) = cos(narccos x).
It is well known that they satisfy the following second order recurring rela-
tion:

To(z) =1, Ti(z) ==z,
Thni2(x) = 22Ty 11(x) — Th(x).
In this case we have
2degp > degq and degTi = degTy + degp = 1.
It is also well known and in fact easy to prove that
Ton(z) = Tp (222 — 1)

holds for all integers n. This example shows that also the second assumption
in Theorem 1 is needed.

Actually, it is also possible to give an upper bound for the number of
pairs (m,n) with Gp(z) = cGp(P(z)), ¢ € K* = K\{0} variable. This
means that we can give an upper bound for the cardinality of the set

{(m,n) € N|m # n,3c € K* such that G,(z) = cGp(P(z))}.
(Here ¢ may vary with m,n). In fact, the second part of the upper bound in

the last theorem, which depends on the degrees of the polynomials involved,
follows from this more general theorem.

Theorem 2. Let p,q,Go,G1,P € K[z], degP > 1 and (G,(z))52, be de-
fined as above. Assume that the following conditions are satisfied: 2degp >
degq > 0 and

degGi > degGo+degp>0, or
degGy < degGy+ degq — degp.

Then the number of pairs of integers (n,m) with n,m > 0,n # m for which
there exists ¢ € K* with

Gn(z) = cGm(P(z))
is at most C(p,q, P). We have
C(p,q, P) = 107 - log(2C degp) - (4¢)*C1 de8 7 . 71 deeq,
where C1 = 2(deg P + 1).
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It is also possible to replace the conditions concerning the degree by al-
gebraic conditions.

Theorem 3. Let p,q,Go,G1, P € K[z] and (G, (x))22, be defined as above.
Assume that

(1) deg A #0,

(2) degP > 2,

(3) ged(p,q) =1 and

(4) ng(2G1 - Gop, A) =1.

Then there are at most min{exp(10'8), C(p,q, P)} pairs of integers (n,m)
with n,m > 0 such that

holds. We have
C(p,q, P) = 10% - 1og(Cy max{2 deg p, deg q}) - (4¢)?C1 424 . 741 desa,
where C; = 2(deg P + 1).

Remark 4. The degree assumptions from Theorems 1 and 2 arise from
considering the infinite valuation in the rational function field K(z),
whereas by looking at the finite valuations one obtains the divisiblity
conditions from Theorem 3.

Remark 5. It is obvious that for deg P = 1 Theorem 3 cannot hold in full
generality. For example: if G, () is a polynomial in z? for all n we get

Gn(z) = G,(—x)

for all n.

Remark 6. By looking at the proof, it is clear that Theorem 3 also holds,
if we assume instead of (2)
(2") There is no ¢ € K such that A(P(z)) = cA(z) holds.
To our knowledge this is the weakest condition under which our proof works.
It is clear that (2') holds if deg P > 2 or if P is a constant. If P(z) = z
then A(P(z)) = cA(z) holds with ¢ = 1. Suppose that P(z) = ax + b with
a,b€ K and a # 0, (a,b) # (1,0). Denote by P*¥) the k-th iterate of P. Let
Ay be the leading coefficient of A(z). It is left to the reader to show that
A(P(z)) = cA(z) for some ¢ € K* if and only if ad®82 = ¢, a is a root of
unity of order k¥ > 1 and
r k-1

b s ;
Aw) = 8o(o+ =) T[] @ - PO @),
=1 j=0
where 7, s are non-negative integers with rk+s = deg A and — a%l, T1y... Ty

are distinct elements of K.
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The second part of the bound of Theorem 3 follows from Theorem 4 below,
which deals with the case G, (z) = ¢ G (P(z)) with ¢ € K* variable.

Theorem 4. Letp,q,Go,G1, P € K[z] and (G (z))5%, be defined as above.
Assume that the conditions (1)-(4) of Theorem 3 are satisfied. Then the
number of pairs of integers (n,m) with n,m > 0 for which there exists
c € K* with
Gn(z) = cGm(P(x))
is at most C(p,q, P). We have
C(p,q, P) = 10?® - log(C; max{2 deg p, deg q}) - (4e)3C1 de8a . 74C1degq

where C1 = 2(deg P + 1).

3. RESULTS FOR FAMILIES OF ORTHOGONAL POLYNOMIALS

We will turn now our discussion to sequences of certain orthogonal poly-
nomials satisfying (1). The following results can be found in the monograph
of Borwein and Erdélyi [5, Chapter 2.3], Chihara [7, Chapter I and II] or
Szegd [22, Chapter III]. Let (1), be a sequence of complex numbers and
let £: Clz] — C be a linear functional defined by

L[z"] = pp, n=0,1,2,....

Then L is called the moment functional determined by the formal moment
sequence ({4 ). The number pu, is called the moment of order n. A sequence
of polynomials (P, (z))52, with complex coefficients is called an orthogonal
polynomial sequence (OPS) with respect to a moment functional £ provided
that for all nonnegative integers m and n the following conditions are satis-
fied:

(i) degPn(z) =mn,

(ii) L[Py(z)Py(z)] =0 for m # n,
(iii) L[P2(x)] #0.
If there exists an OPS for £, then each P,(z) is uniquely determined up to
an arbitrary non-zero factor. An OPS in which each P,(z) is monic will be
referred to as a monic OPS; it is indeed unique.

It is well known that a necessary and sufficient condition for the existence
of an OPS for a moment functional £ with moment sequence (u,) is that
for the determinants defined by

fo M1 ... fin

B He o oo fing
Ay = det(pisg)ij=o0 = : ) .

Hn Hn+1 ... H2n

the following conditions hold
A, #0, n=0,1,2,....
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In this case L is called quasi-definite.

A moment functional £ is called positive-definite if L[n(z)] > 0 for every
m(z) € Clz] that is not identically zero and which satisfies m(z) > 0 for all
real . The following holds: £ is positive-definite if and only if its moments
are all real and A, > 0 for all n > 0. Furthermore, using the Gram-Schmidt
process, a corresponding OPS consisting of real polynomials exists. More-
over, L is positive-definite if and only if a bounded, non-decreasing function
1) exists, whose moments

00
M, = / $nd¢(fl3)a n=0,1,2,...,

—0o0

are all finite and for which the set
S(y) ={z|y¥(z+ ) —p(x — ) > 0 for all 6 > 0}
is infinite. Further for the function v

o

/ 2"d(z) = pp, = L[z"], n=0,1,2,...

—0oQ

is valid. This is known as the representation theorem for positive-definite

moment functionals or as the solution to the Hamburger moment problem.
Thus, an OPS with respect to a positive-definite moment functional £

induces an inner product defined by

{p,q) = Llp(z)q(2)], p,q € Ca],

where ¢(z) is obtained by taking the complex conjugates of the coefficients
of g(z), on the linear space of polynomials with complex coefficients.
In particular, we have (P, P,) = L[P,(z)P,(z)] = 0, m # n. Thus,
our definition of orthogonality for the OPS is consistent with the usual
definition of orthogonality in an inner product space.

One of the most important characteristics of an OPS is the fact that any
three consecutive polynomials are connected by a very simply relation: Let
L be a quasi-definite moment functional and let (P,(z))52, be the corre-
sponding monic OPS. Then there exist constants ¢, and A\, # 0 such that

(9) P(z) = (z — cp)Pr—1(z) — AnPp—2(z), n=1,2,3,...,

where we define P_;(z) = 0. Moreover, if £ is positive-definite, then ¢, is
real and A,11 > 0 for n > 1 (A is arbitrary).

The converse is also true and it is referred to as Favard’s theorem: Let
cn)olo and (A,)9%, be arbitrary sequences of complex numbers and let
P,(x))22, be defined by the recurring formula

(
(
(10) Po(z) = (3 — cp) Pp1(z) — MnP2(z), n=123,...,
(11) P_1(.Z') = 0, P()(CE) =1.
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Then there is a unique moment functional £ such that
L[1] = A1, L[Py(z)Py(z)] =0 for m #n, m,n=0,1,2,....

L is quasi-definite and (P, (z))5° , is the corresponding monic OPS if and
only if A\, # 0 for all n > 1, while L is positive-definite if and only if ¢, is
real and )\, > 0 for all n > 1.

More generally, let (P, (z))52, be a sequence of polynomials in C[z]| sat-
isfying
P,(z) = (Apz + Bp)Py—1(x) + DpPp_o(z) (n>1)
P—l("I") = Oa PO(‘T) =g 7é 07

where A, B,,D, are complex numbers with A4, # 0,D, # 0 for ev-
ery n > 1. It follows easily by induction on n that P, has degree n
and that P, has leading coefficient k, = gA;---A, for n > 0. Let
k_y := 1. For n > —1 write P,(z) = kyP,(z). Thus P,(x) is monic for
n > 0. Further, P (z) = 0, Pi(z) = 1 and the sequence (P,(z))%,
satisfies (8) with ¢, = —Bpkn_1/kn, = —Bp/An, A1 arbitrary and
A = —Dpkn_o/kn = —Dy/An_1A4, for n > 2. So by Favard’s Theorem,
(P, ()22, is a monic OPS and therefore, (P, (z))%%, is an OPS for some
quasi-definite moment functional L£. Moreover, £ is positive definite if
B, /A, € Rand D, /A,_1A, <0 for n > 2.

We now consider the special case that Ay =e/g, By = f/g, D1 = 0 where
g #0and A, = a, B, =b, D, = d do not depend on n for n > 2, that
is, we consider the sequence of polynomials (P, (z))5>, with P,(z) € C[z]
given by
(12) Poi1(z) = (az + b)P,(z) + dP—1(z), n>1,
(13) Py(z) =g, Pi(z) =ex + f,
where a,b,d, e, f,g are complex numbers with adeg # 0. By the comments

just made this sequence is an OPS for some quasi-definite moment func-
tional L.

In the view of Remark 2 it is clear that Theorem 1 and Theorem 2 cannot
hold for all OPS (P, (z))32,, because the Chebyshev polynomials of the first
kind are orthogonal with respect to the positive-definite moment functional

Llr(z)] = / (@)1 — 5?) " Y2dg.

-1
Using the same methods as above we will prove the following analogues of
Theorems 1 and 2.

Theorem 5. Let a,b,d,e, f,g € C with adeg # 0 and let (P,(x))>2, be
a sequence of polynomials in Clz] defined by (12) and (13). Let S(z) €
Clz],deg S > 1. If we assume that e = ag, then there are at most
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min{exp(181%), C(S)} pairs of integers (n,m) with n,m > 0, n # m such
that
Py(z) = Py(S())
holds. We have
C(S) = 10% - log(4(deg S + 1)).

Again we can prove the following result concerning the more general equa-
tion P,(z) = ¢ Py,(S(z)) with some ¢ € C* variable and again the second
part of the last theorem follows from this theorem.

Theorem 6. Let a,b,d,e, f,g € C with adeg # 0 and let (P,(x))>2, be
defined by (12) and (13). Let S(z) € Clz],deg S > 1 and e = ag. Then the
number of pairs of integers (n,m) with n # m for which there exists c € C*
with

Po(z) = ¢ Pn(S(2))
is at most C(S). We have

C(S) = 10% - log(4(deg S + 1)).

Remark 7. We want to mention that Theorem 3 and therefore also Theorem
4 can be applied to this situation. The conditions (1) and (3) are trivially
satisfied in this case. Condition (4) holds, if A(z) = p(z)? + 4¢q(z) = (az +
b)2+4d and 2P, (z) — Py(z)p(z) = 2(ex+ f) —g(az+b) = (2e—ag)z+2f —bg
have no common roots. This means that, if 2e = ag,2f = bg does not hold

or if
bg —2f
€Tr =
2e —ag

is not a root of A(z), then we get our assertion for all S(z) € Clz],deg S > 2.
This is satisfied for example if we consider sequences P, (z) € C[z] defined
by

Pyii(z) = (ax + b)Py(x) + dPp—1(z), n>1,
P_l(l‘) = 0, P()(.’L‘) =g 7& 0,

where a, b, d, g are complex numbers with adg # 0.

4. AUXILIARY RESULTS
In this section we collect some important theorems which we will need in

our proofs.

Let K be an algebraically closed field of characteristic 0, n > 1 an integer,
ai, - .. , 0y elements of K* and I a finitely generated multiplicative subgroup
of K*. A solution (z1,...,z,) of the so called weighted unit equation

(14) aix1+--+aprp,=1inzy,... ;o €T
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is called non-degenerate if

(15) Zaj:zj # 0 for each non-empty subset J of {1,... ,n}

jeJ
and degenerate otherwise. It is clear that if I' is infinite and if (14) has
a degenerate solution then (14) has infinitely many degenerate solutions.

For non-degenerate solutions we have the following result, which is due to
Evertse, Schlickewei and Schmidt [14].

Theorem 7 (Evertse, Schlickewei and Schmidt). Let K be a field of
characteristic 0, let ai,... ,a, be non-zero elements of K and let T be a
multiplicative subgroup of (K*)™ of rank r. Then the equation

a1+ ... +apz, =1

has at most
exp((6n)*" (r +1))
non-degenerate solutions (r1,...,2z,) € L.

This theorem is the Main Theorem on S-unit equations over fields of
characteristic 0. It is a generalization and refinement of earlier results due
to Evertse and Gy6ry [11], Evertse [9] and van der Poorten and Schlickewei
[16] on the finiteness of the number of non-degenerate solutions of (14).
For a general survey on these equations and their applications we refer to
Evertse, Gy&ry, Stewart and Tijdeman [12].

Next we will consider equation (14) also over function fields. Let F' be
an algebraic function field in one variable with algebraically closed constant
field K of characteristic 0. Thus F' is a finite extension of K(¢), where ¢ is a
transcendental element of F' over K. The field F' can be endowed with a set
Mp of additive valuations with value group Z for which

K={0}U{z € F|v(z) =0 for each v in M }

holds. Let S be a finite subset of M. An element z of F' is called an S-unit
ifv(z) =0 for allv € Mp\S. The S- units form a multiplicative group which
is denoted by Ug. The group Ug contains K* as a subgroup and Ug/K* is
finitely generated. For function fields we have the following result:

Theorem 8 (Evertse and Gyéry). Let F,K,S be as above. Let g be the
genus of F/K, s the cardinality of S, and n > 2 an integer. Then for every

ait, ... ,an € F*, the set of solutions of
(16) a1+ ... +apzy, =1inxy,... ,z, € Ug
(17) with a11, ... ,apty not all in K

is contained in the union of at most
log(g +2) - (e(n 4 1))(H1s+2

(n — 1)-dimensional linear subspaces of F™.
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For deriving this upper bound an effective upper bound of Brownawell
and Masser [6] for the heights of solutions of (16) is used. For n = 2 the
theorem gives the upper bound

log(g +2)(3¢)***?

for the number of solution of (16). We note that for the case n = 2 Evertse
[10] established an upper bound, which is better and independent of g.

Theorem 9 (Evertse). Let F,K,S be as above. For each pair \,p in F*,
the equation

+py=1inz,y€Ug
has at most 2 - 7% solutions with A\z/uy ¢ K. As above, s denotes the
cardinality of S.

Finally, we need some results from the theory of algebraic function fields,
which can be found for example in the monograph of Stichtenoth [21]. We
will need the following estimates for the genus of a function field F/K (cf.
[21], page 130 and 131).

Theorem 10 (Castelnuovo’s Inequality). Let F/K be a function field
with constant field K. Suppose there are given two subfields F1 /K and Fo/K
of F/K satisfying
(1) F = F1F, is the compositum of Fy and F,
(2) [F : F;] =n;, and F;/K has genus g; (i = 1,2).
Then the genus g of F/K is bounded by
g <nigi +nags + (n1 —1)(n2 — 1).

In the special case Fi = K(z) and F» = K(y), Castelnuovo’s Inequality
yields:

Theorem 11 (Riemann’s Inequality). Let ¢ be a non-constant irre-
ducible polynomial in two variables with coefficients in K and suppose that
F = K(z,y) with o(z,y) = 0. Then we have the following estimate for the
genus g of F/K:

g <([F:K()]-1)-([F: K(y]-1).

We mention that Riemann’s Inequality (and therefore also Castelnuovo’s
Inequality) is often sharp, and that in general it cannot be improved.

Let K be an algebraically closed field of characteristic 0. Let K be a finite
extension of K(z) where z is transcendental over K. For { € K define the
valuation v such that for @ € K(z) we have Q(z) = (z — )" A(z)/B(z)
where A, B are polynomials with A(§)B(§) # 0. Further, for @ = A/B with
A, B € K[z] we put deg ) := deg A — deg B; thus vy, := — deg is a discrete
valuation on K(z). Each of the valuations v¢, v, can be extended in at most
[K : K(z)] ways to a discrete valuation on K and in this way one obtains all
discrete valuations on K. A valuation on K is called finite if it extends v for
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some ¢ € K and infinite if it extends v,,. We choose one of the extensions
of vy to K and denote this by —ord. Thus ord is a function from K to Q
having the properties

(a) ord(Q) = deg@ for Q € K|z],

(b) ord(AB) =ord(A) + ord(B) for A,B € K,
(¢c) ord(A+ B) < max{ord(A4),ord(B)} for A, B € K,
(d) ord(A+ B) = max{ord(A),ord(B)} for A,B € K

with ord(A) # ord(B).
5. PROOF OF THEOREM 1

First we reduce the solvability of (8) to the solvability of three systems
of exponential equations in n, m. We start with a sequence of polynomials
(Pn(z))5%, defined by (1). Then, in the sequel a(z),@(z),g1(z), g2(z) are
always be given by (3).

Lemma 1. Let (G ()52, be a sequence of polynomials defined by (1) and
let P € K[z],deg P > 1. Assume that gi(x)g2(z) # 0. Then (8) has at most
exp(18° - 3) solutions m,n € Z,m # n, which do not satisfy any of the
systems:

as) {m@M@W+WWW@W=0
01(P())(P(2))™ + g(P(x))a@(P(z))™ = 0
g1 (2)a(z)" = g1 (P(z))a(P(z))™

(19) {@mmww:muwmmmmw
w(@)a(z)" = g1 (P(z))a(P(z)™

(20) {mwmmw=mwwmwmmw

Proof. First we define

(z,Vp(z)2 + 4q(z), /p(P(z))2 + 49(P(z))).

Clearly, K is finitely generated extension ﬁeld of Q. Furthermore, let I" be
the multiplicative subgroup of (K*)® generated by

(a(2),8(2),1) and (@(P(2))"",@(P(2))”", a(P(x))/a(P(z)))-

We consider now for n # m the equatlon Gn(z) = Gm(P(x)) and obtain

gi1(z)a(z)” + g2(z)a(z)" — g1(P(z))a(P(z))™ — g2(P(z))a(P(z))™ = 0.
This yields
(21)

gi(z)  a(z)" g2(z) @(=@)"  gi1(P(z)) a(P(2))™

g2(P(z)) a(P(z))™  g2(P(x)) a(P(x))™  g2(P(z)) a(P(z))™
Now we consider the weighted unit equation
g1(x) g92(z) _ g91(P(z))

) aP@)” T Rl 0(PE)

z3 =11in (z1,z2,23) € T
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According to Theorem 7, equation (22) has at most exp(18° - 3) solutions
if no non-trivial subsum vanishes. By observing that g1(z), g2(z) # 0 this
means that (21) has at most exp(18° - 3) solutions m, n not satisfying (18),
(19) and (20). O

In the next lemma we calculate the order of a(x) and @(z) respectively
in the function field K/K, where K is defined as in the previous proof. We
will assume that

ord(a) > ord(a@).
If this is not satisfied we can achieve this by interchanging a(z) and @(z).
Then we have:

Lemma 2. Let (G (2))5, be a sequence of polynomials defined by (1) and
assume that 2degp > degq > 0. Then

(23) ord(a) = degp,
(24) ord(@) = degq — degp < degp.
Proof. First assume ord(a) = ord(@). Then by (a), (c), (b) we have

1
degp = ord(a + @) < ord(a) = 2 degq

which is against our assumption. Therefore, ord(a) > ord(@). Now it fol-
lows from (a), (d) that degp = ord(a + @) = ord(«a). Using (a), (b) and
a(z)a(x) = —q(z) we then obtain

ord(a) = degq — degp < degp.
Therefore the proof is finished. O

Next we prove the following lemma.

Lemma 3. Let (Gn(2))s2, be a sequence of polynomials defined by (1)

and let P € Kiz],degP > 1. Assume that neither o(z)/a(z), nor
a(P(z))/a(P(x)) is a root of unity. We consider the systems of equations

{ g1(z)a(z)™ + go(z)a(z)" =0

91(P(z))e(P(z))™ + g2(P(z))a(P(z))™ = 0

The first equation has at most one solution in n, and the second one at most
one solution in m.

Proof. This follows from the fact that neither «(z)/@(z), nor
a(P(z))/a(P(x)) are roots of unity. In particular, assume that we have
two solutions 71, n9. Then we obtain

8- (28)"- ()"

which implies that ni, = ns. O

PROOF OF THEOREM 1.
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First, it is clear that we have
ord(a — @) = degp.

Moreover, the following relations hold

ord(a(P)) = degp deg P,

ord(a(P)) = (deggq — degp) deg P,

ord(a(P) — a@(P)) = degp degP.
The important relations
(25) 91(z)(a(z) —a(z)) = Gi(z) — Go(z)a(x),
(26) g2(z)(@(z) — a(z)) = Gi(z) — Go(z)a(z)
are consequences of (4). Observe that under the condition 2degp > degq > 0
our sequence (G (z))> , is nondegenerate. This follows from the fact that

a(z)" = a(z)" implies ord(«)=ord(@), which by Lemma 2 yields a contra-
diction. The same is true for the quotient a(P(z))/a@(P(x)).

In order to finish our proof, we want to show that g;(x),ge(x) # 0 and
that (19) and (20) have no solutions.

Case 1. deg G1 > deg Gy + degp.
In this case we have

ord(G1 — Goa) = deg G,
ord(G1 — Goa) = deg G1.
This implies
ord(G1(P) — Go(P)a(P)) = deg G deg P,
ord(G1(P) — Go(P)a(P)) = deg G1 deg P.
Therefore we get
ord(g;) = deg G1 — degp,
ord(gs) = deg G1 — degp.

Observe that from this we can conclude that g;(z), g2(z) # 0. Now assume
that m,n is a solution of (19). Then we obtain by calculating the order of
both sides of the equations and by using Lemma 2

(27) (deg Gy — degp) + ndegp = (deg G1 — degp) deg P + m deg pdeg P,
(28) (deg Gy — degp) + n(degq — degp) = (deg G1 — degp) deg P +
+m(deg q — degp) deg P.
Subtraction yields
n(2degp — degq) = m(2degp — deg q) deg P.
By our assumption 2 degp > deg g we derive
(29) n=mdegP ,
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and substituting this in (27) implies
(deg G1 — degp) = (deg G1 — degp) deg P.

But this yields deg P = 1, which by (29) gives m = n, or deg G; = degp,
leading to a contradiction.
In the same way we conclude that a solution m,n of (20) implies

(deg G1 — degp) + ndegp = (deg G1 — degp) deg P +
+m(degq — deg p) deg P,
(deg G1 — degp) + n(degq — degp) = (deg G1 — degp) deg P +
+m deg p deg P.

Again subtraction yields
n(2degp — degq) = m(degq — 2degp)deg P ,
and therefore we get n = —m deg P, which contradicts deg P # 0.
Case 2. deg G1 < deg Gy + degq — degp.
Here we have

ord(Gy1 — Goa) = deg Gy + deg g — degp,
ord(G1 — Goa) = deg G + degp.

Thus

ord(g1) = deg Gy + deg g — 2degp,
ord(ge) = deg Gy.

From this we derive gi(z), g2(z) # 0. Again by Lemma 2, for any solution
(n,m) of (19) we must have

(30) (deg Gy + degq —2degp) +ndegp = (deg Gy +degq —

—2degp) deg P + mdeg p deg P,
(31) degGo + n(degq — degp) = deg Gy deg P + m(deg g — deg p) deg P.
Subtraction yields

(n —1)(2degp — degq) = (m — 1) deg P(2degp — degq)
and therefore
(n—1) = (m —1)degP.
By (30) we obtain
(deg Gy + deg g — degp)(1 — deg P) = 0.

This yields deg P = 1, which again implies n = m, or deg Go+degg—degp =
0, which gives deg G1 < 0, in both cases a contradiction.
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Again we get from (20)
(deg Go + deg g — 2degp) + ndegp = deg Gy deg P +
+m(degq — deg p) deg P,
deg Gy + n(degq — degp) = (deg Gy + degq — 2degp) deg P +
+m degp deg P.

Subtraction gives
(n—1)=—(m —1)deg P,
which implies deg P = 0, a contradiction.

Now by Lemma 1 we get that (8) has at most
1+ exp(18? - 3) < exp(18'7)

solutions n,m € Z,n,m > 0 with m # n. The second part of our upper
bound will follow from the proof of Theorem 2 where a different method of
proof is used and thus the proof is finished. O

6. PROOF OF THEOREM 5
Here (P, (z))°, is an OPS and we have in the sense of (12) and (13)
p(z) =ax + b, ¢(z) =d.
Again we want to apply Lemma 1 to show that the equation
(32) Po(z) = Pn(S(2)),

where S(z) € C[z],deg S > 1, has only finitely many solutions m,n €
Z,m # n. Let a(z),a(x),g1(z), g2(z) be given by (3).

As above we may assume without loss of generality that ord(a) > ord(a).
By observing 2degp = 2 > 0 = degq, we get by Lemma, 2 that

ord(@) =1 and ord(a)=—1.
This yields
ord(a — @) =1,
ord(P, — Pya) = 1.

We have to calculate ord(P; — Pyar). Using that Py(z) = g, Pi(z) = ex + f
and the assumption that e = ag we get

(P1(z) — Po(z)a(z))(P1(z) — Po(z)a(z)) =
= Pi(z)* — Po(z) P1(2)p(z) — Po(2)*q(z) =
= (ex + f)* — glex + f)(ax + b) — g*d = sz +
for certain s,t € C. By invoking (a), (b) we then obtain
ord(P; — Pya) =: w < 1 —ord(P, — Pya) = 0.

Observe that Lemma 3 can be sharpened in this case. Because of the fact
that deg P, = n the number of solutions of (18) is zero. Furthermore it
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is clear that g1(z), g2(z) cannot be zero in this case, because the following
relations hold

Ord(gl) = 07
ord(g2) =w—1<0.
Now assume that m,n € Z,m # n is a solution of (19). Then we get
n = mdeg S,
(w—1) —n =[(w—1) —m]deg S.
Consequently deg S = 1, and therefore m = n, a contradiction.
In the same way we get for a solution of (20), that
(w—1) —n=mdegs,
n=[(w—1) —m]degS.
Adding the two equations gives deg S = 1, and thus n = (w — 1) —m, a
contradiction because the left side of the equation is positive and the right
side negative.

By Lemma, 1 the first part of the theorem follows and the proof is finished
as the second part of the bound will follow from Theorem 6. O

7. PROOF OF THEOREM 3

We start our proof with some useful lemmas.

Lemma 4. Let A,B, P € K[z]. If gcd(A, B) = 1 then gcd(A(P), B(P)) =
1.

This lemma is a special case of a lemma in the monograph of Schinzel
[18], page 16. It was originally proved in [17].

We will use the same notations as introduced in the proof of Theorem 1.
There we calculated the order which was defined as the negative value of
some valuation extending 1/z from K(z) to the function field

K = K(z)(vA(z), VA(P(2)))
of the elements g1(x), g2(x) by using the equations (25) and (26). Here we

want to calculate the valuations v(g1) and v(g2) where v extends v¢ to K
for some ¢ € K.

Lemma 5. Let (Gn(2))5%, be a sequence of polynomials defined by (1) and
assume that gcd(2G1 — Gop, A) = 1. If v is a finite valuation on K with

v(A) > 0 then v(g1VA) = v(gaVA) = 0.
Proof. We have equation (25)
g1(z)(a(z) —a(z)) = Gi(z) — Go(z)a(z),
which we may rewrite in the form

2g1(z)VAz) = 2G1(z) — Go(z)p(z) + Go(z)/ A(z).
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By our assumption that gcd(2G1 — Gop, A) = 1 we have that
1/(2G1 — G()p) =0.

Because of the fact that

V(GoVE) = Go) + 51(A) > 0

we get that
v(giVA) = v(2:VA) = min{v(2G1 — Gop), v(GeVA)} =0

which was our assertion.
The same holds for go(x) and therefore the proof is finished. O

Assumption (4) of Theorem 3 together with Lemma 4 imply
ged(2G1(P) — Go(P)p(P), A(P)) = 1.
As
291(P(z))v A(P(z)) =
= 2G1(P(z)) — Go(P(2))p(P(z)) + Go(P(z))v A(P(z))

we have again, as in the proof of the previous lemma, that for a finite valu-
ation v on K with v(A(P)) > 0 we have v(g1/A(P)) = v(g2y/A(P)) = 0.

PROOF OF THEOREM 3.

Our intention is to prove that the systems of equations (19) and (20) are
not solvable.

Counsider for example the equation

(33) g1(z)a(z)" = g1(P(z))a(P(z))™.
The other equations can be handled analogously.

We have deg A(P) = deg Adeg P > deg A > 0, as deg P > 1 by assump-
tion (2). Hence A(P) has a zero £ such that

V&(A(P)) > Vg(A) > 0.

This implies that there is a finite valuation v on K such that
v(g1(P)) = —v(A(P)).

Next we want to show that v(a(P)) = 0. Indeed, as v(A(P)) > 0 and

o(Pla) — PP + VAPE)
2

we have
(34) v (a(P) _ %p(P)) > 0.

By assumption (3) of Theorem 3 and Lemma 4 we have gcd(p(P), ¢(P)) =1
which implies min{v(p(P)),v(¢(P))} = 0. If v(p(P)) > 0 then from

V(A(P)) = v(p(P)? +4q(P)) > 0
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it follows that then also v(g(P)) > 0 which is impossible. Therefore,
v(p(P)) = 0. Consequently we have v(a(P)) = 0. In a similar fashion it
follows that v(a(P)) = 0.

Thus equation (33) implies

v(g1) + nv(a) = v(g1(P)),
which yields
nv(a) = v(g1(P)) —v(g1) <0,

hence (33) has no solution in n, if v(«) > 0 and at most one, if v(a) < 0.

Studying the second equation of (19) we may conclude in the same way
that this equation has no solution in n, if v(&) > 0 and at most one if
v(@) < 0. Thus the system of equations (19) may have a solution only if
v(a),v(a) < 0. Observe that this is impossible since a(z),a(z) are integral
over K[z], as they are zeros of the monic equation T? — p(z)T — q(z) = 0
with coefficients in K[z]. The integral closure of K[z] in K consists of those
elements f such that v(f) > 0 for every finite valuation v of K. So in
particular, v(a) > 0,v(a) > 0. Hence (19) has no solution.

The proof of the unsolvability of (20) is analogous. It is clear that
91(z),g2(z) # 0 holds, because from assumption (1) we can conclude that
there is a zero ¢ of A(z), for which we can derive using Lemma 5 that
v(g1) < 0 and v(g2) < 0, where v is a finite valuation extending v; to K.
Consequently they must be different from zero. Since Lemma 3 is true also in
this case, (because a(z)/a@(z) and a(P(z))/a(P(z)) are not roots of unity),
we get the first part of the assertion of Theorem 3 by Lemma 1. The second
part of the bound will follow from Theorem 4. O

8. PROOF OF THE THEOREMS 2, 4 AND 6

We keep using the notation introduced before. Especially, let K /K be the
algebraic function field in one variable defined by

K =K(z,Vp(2)? + 44(z), /p(P(2))? + 4¢(P(z))).

Now we have the following lemma.

Lemma 6. There ezists a finite subset S C Mg of valuations of the func-
tion field K such that a(z),a@(x),a(P(z),a(P(z)) € Us and such that

|S| < 4degqg(deg P+ 1) + 4.

Proof. Let So be the set of infinite valuations of K and Sy the set of finite
valuations of K. Note that for every v € Sy we have v(a) > 0, v(@) > 0,
v(a(P)) > 0, v(a(P)) > 0 since these functions are integral over K[z]. Take
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S:SOOU51USQU53US4,Where

S1 ={v € So|v(a) > 0},
Sy = {v € Sp|v(a@) > 0},
S3 = {v € Sp|v(a(P)) > 0},
Sy = {v € Splv(a(P)) > 0}.

Then clearly «(z),a(z),a(P(z),a(P(x)) are contained in Ug. Since
[K : K(z)] < 4, we have |Sy| < 4. Further, a(z) -a(z) - a(P(z)) -@(P(z)) =
q(z) - ¢(P(z)) =: Q(z). Therefore, S; US2 U S3U Sy =: S5 := {v € S :
v(Q) > 0}. Each of the valuations in S5 is an extension to K of some
valuation v¢ on K(z) corresponding to a zero £ of Q(z). The polynomial
Q(z) has at most deg @ = degg(deg P+ 1) zeros, and for each of these zeros
€, the valuation v can be extended in at most four ways to a valuation on
K. Therefore, |S5| < 4deg g(deg P + 1). This implies Lemma 6. O

Next we want to estimate the genus of the function field K/K. This can
be done using Castelnuovo’s Inequality (Theorem 10).

Lemma 7. We denote by g the genus of the function field K/K. Then we
have

g < 2max{2degp,degq}(deg P+ 1) — 3.
Proof. First observe that we have
F =K(z,VA(z), VA(P(2))) = K(z, VA(z)) - K(z, VA(P(2)))-
Let us denote Fy = K(z,/A(z)), Fa = K(z, /A(P(x))). Thus we have
Fi=K(z,y), ¢i(z,y) =y —Az) =0

and
P =K(z,y), (z,y) =y>—A(P(z)) =0.
Furthermore we denote by g; the genus of F; /K (i = 1,2). We have
ni=[F:F]<2 and ng=I[F:F] <2
By Riemann’s Inequality (Theorem 11) we get the following estimates:
g1 < ([F1: K(z)] = 1) - ([F1 : K(y)] — 1) < deg A — 1,
92 < ([F2: K(z)] = 1) - ([F2 : K(y)] — 1) < deg A deg P — 1.

Since A(z) = p(x)? +4q(x) we have deg A < max{2deg p, deg q}. Now using
Castelnuovo’s Inequality (Theorem 10) we get

g <2(degA—1)+2(degAdegP —1)+1=2degA(degP +1) — 3,

and therefore our proof is finished. O

Finally, we need the following lemma.
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Lemma 8. Assume 2degp > degq > 0 or ged(p,q) = 1 and p,q not both
in K. Let v1,7v2 be non-zero elements of K. Then there is at most one pair
of integers n,m such that

o) e @@,
) Maw@y M PEEEn <8

o) e oPE)
0 Ma@ M PEEE)m <8

S o(PE)" _ .,
(37) 71_(P($))m e K* and VZE(P(m))m e K*,
respectively.

Proof. First we prove equation (35). Suppose there are two such
pairs (ni,m1), (n2,ms2). Let n = ny — ng, m = my — me. Then
(71/72)(a(z) /@(z))™ € K* for i = 1,2, hence (a(z)/a(z))™ € K*. Suppose
n # 0. Then a(z)/a(x) € K*. Using p(z) = a(z) + a(z), ¢(z) = a(z) - a(z)
it follows that p(z) = cia(z), ¢(z) = coa(x)? with c¢i,c2 € K* and so
p(x)? = c3q(z) with c3 € K*. But this contradicts both 2degp > degq > 0
and ged(p,q) = 1. It follows that n = 0, whence ny = n9 and so
(n1,m1) = (n2,m2). This proves the first part of the lemma.

Now we consider equation (36). As above we assume that there are two
such pairs. Hence we get (a(P(z))/a(P(z)))™ € K*. This implies that either
a(P(z))/a(P(z)) € K* which is impossible by the same arguments as above
or m = 0. But now, using the other expression in (36) we get that alson =0
must hold. Consequently we have (ni,m1) = (n2, mz). Thus we proved the
second part of our lemma.

The arguments for (37) are the same as for (36). This proves the lemma
also in the third case. (]

Assume that n, m are integers satisfying G, (z) = ¢Gy,(P(x)) for some
c € K*. It follows that

Biz1 + Pozo + Baxs =1

where
el . e@ . aPe)
B =y T arw) P T wew)
L @) L a)n a(P(x))"

D0 APy T aP@y P aP)n
From the choice of S in Lemma 6 and from the fact that ¢ € K*, K* C Ug, it
follows that z1,z9, 23 € Ug. Lemma 8 implies that any given pair of elements
(zi, ;) gives rise to at most one pair (n,m), especially any triple (z1,z2,z3)
induces at most one solution (n,m) of the equation in consideration.
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By Theorem 8, either 811, fox2, G323 all belong to K*, which by Lemma,
8 is possible for at most one pair (n,m), or (z1,z2,z3) lies in one of at
most log(g + 2) - (4e)***2 proper linear subspaces of K?, where s denotes
the cardinality of the set of valuations S introduced by Lemma 6. That is,
(z1, 9, x3) satisfies one of at most log(g + 2)(4e)***2 relations of the shape

(39) Y11 + Y22 + Y323 =0

with (y1,72,73) a non-zero triple in K3. Assume for the moment that ; # 0
fori =1,2,3 and write A;; = fyj_l(ﬂwj — fj7i). Assume for the moment also
that all A;; are non-zero. Then we have

A3z1 + Aogza =1, Ajpzy +Aszexz =1, Agimo + Agzizg = 1.
In fact it suffices to consider one of these equations for example the first one
Aq3z1 + Agzzy = 1.

Lemma 8 implies that there is at most one pair (n,m) such that both quan-
tities A13z1 and Agzzo belong to K. Theorem 9 implies that there are at
most 2 - 72% pairs (z1,x2) such that at least one of these quantities does not
belong to K. It follows that there are at most 1 + 2 - 7?% pairs (n,m) for
which y1z1 + yex2 4+ y323 = 0.

Next, we handle the case that one of the A;;, where (4, j) = (1, 3) or (2,3),
is zero. We assume that all y; # 0 for ¢ = 1,2,3. It is clear that A;; = 0
implies also Aj; = 0. Moreover, we remark that if A;; = 0 then neither
Ajr, = 0 nor Aj, = 0 where {3,4,k} = {1,2,3} can hold. Because assume
that A;; = 0 and A;; = 0. This implies that also Aj; = 0 which means that
all the quantities Aq3,... ,As; are zero. Hence we would get

prz1 + Boxo + B3x3 = (V121 + Yox2 + Y373) (%) =1,

which is a contradiction to equation (39). From this discussion it follows
that A;; =0 for (4,7) = (1,3) or (2,3) implies that we have

Ajgzi + Ajpzy = 1,

with non-zero A, Aji and {7, j,k} = {1,2,3}. As above, Theorem 9 implies
that there are at most 2 - 72% pairs (z;,7;) such that at least one of these
quantities does not belong to K which can happen for at most one pair
(n,m) by Lemma 8.

Finally, we handle the case that v; = 0 for some i = 1,2, 3. Observe that
at most one of the 7; can be zero. Now we assume that y; = 0. Then (39)
becomes

Yox2 + y3r3 = 0.

Therefore we have

Bz + <ﬁ3 - Eﬂz) z3 =
V2
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This implies, under the condition 3 — (7y3/v2) B2 # 0, that there are at most
1 + 2 - 7% pairs of solutions (n,m). If this condition is not satisfied then we
have
Gix1 =1 and [oxs+ B33 =0

which means that (38) has a vanishing subsum. The cases y3 = 0 and 3 = 0
are totally analogous. We get in both cases that there are at most 1+ 2- 72
pairs of solutions (n,m), if we assume that (38) has no vanishing subsum.

The cases for vanishing subsums of equation (38) can be rewritten in the
following form:

{ gi(z)a(z)" = cga(P(z))a(P(z))™

ga(z)a(z)" = cg1(P(z))a(P(z))™

{ go(z)a(z)" = cga(P(z))a(P ()™

g1(z)a(z)" = cg1(P(z))a(P(z))™
(@) ex(

91(P(z))a(P(z))™ + g2(P(z))a(P(z))™ = 0
But the first two systems of equations are, up to the constant ¢, the
same as (20), (19), respectively, while the third system is (18). In the
proof of Theorems 1, 3 and 5 we showed that (20), (19) are unsolvable
by calculating the values of certain infinite or finite valuations. Since for
any of these valuations v we have v(c) = 0, the same argument applies
to the first two systems above and we conclude that these systems are
unsolvable. Further it has been proved that (18) has at most one solu-
tion (n,m), therefore the third system above has at most one solution (n, m).

Altogether, we get for the number of pairs (n,m) of integers with n # m
satisfying G, (z) = ¢ G, (P(z)) for some ¢ € K* the upper bound

1+ log(g + 2)(4e)™ 12 . [T+ 12 7%] < log(g + 2)(4e)*s 272512,

Now using the estimation for the genus of our function field (Lemma 7) and
the estimate for the cardinality of the set S (Lemma 6) we get that the
number of solutions can be bounded by

C(p,q,P) = C(p,q, P) = log(2max{2 deg p,deg q}(deg P + 1)) -
-(46)16 deg g(deg P+1)+1878 deg g(deg P+1)+10‘

Last observe that in Theorem 2 we have assumed that 2degp > degq and
in Theorem 6 we have

p(r) =azx+b and g¢(z)=d,
i.e., degq = 0 and degp = 1. This proves the bounds as claimed. ]
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