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Abstract. Let K be a field of characteristic 0 and let (Gn(X))∞n=0 be
a linear recurring sequence of degree d in K[X] defined by the initial
terms G0, . . . , Gd−1 ∈ K[X] and by the difference equation

Gn+d(X) = Ad−1(X)Gn+d−1(X) + . . . + A0(X)Gn(X), for n ≥ 0,

with A0, . . . , Ad−1 ∈ K[X]. Finally, let Q(X,Y ) ∈ K[X, Y ]. In this
paper we are giving conditions depending only on G0, . . . , Gd−1, on Q,
and on A0, . . . , Ad−1 under which the Diophantine equation

Gn(x) = Gm(y) with Q(x, y) = 0

has only finitely many solutions (n, m) ∈ Z2. This paper is a contin-
uation of the work of the authors on this equation in the special case
of Q(X, Y ) = Y − P (X) (cf. [8, 6, 9]) and of a recent result due to U.
Zannier [15].
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1. Introduction

Let K denote an algebraically closed field of characteristic 0, and let
A0, . . . , Ad−1, G0, . . . , Gd−1 ∈ K[X] and (Gn(X))∞n=0 be a sequence of poly-
nomials defined by the d-th order linear recurring relation

(1) Gn+d(X) = Ad−1(X)Gn+d−1(X) + . . .+A0(X)Gn(X), for n ≥ 0.

Furthermore, let P (X) ∈ K[X],deg P ≥ 1. Recently, the authors investi-
gated the question, what can be said about the number of solutions of the
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Diophantine equation

(2) Gn(X) = Gm(P (X)).

The problem was motivated by properties of families of orthogonal polyno-
mials. For example, the Chebyshev polynomials of the first kind , which are
defined by

Tn(X) = cos(n arccosX),

have the well known property that

T2n(X) = Tn(2X2 − 1)

for all integers n. Let us mention that all orthogonal polynomials satisfy a
second order linear recurring sequence, e.g. for the Chebyshev polynomials
we have T0(X) = 1, T1(X) = X and Tn+2(X) = 2XTn+1(X) − Tn(X), n =
0, 1, 2, . . . .

Recently, the authors [8] were able to formulate conditions for sequences
of polynomials satisfying a second order linear recurrence under which they
could conclude that (2) has only finitely many solutions m,n ∈ Z,m, n ≥
0,m 6= n. For the proof they used the Main Theorem on S-unit equations
over finitely generated fields of characteristic zero [3, 5]. Furthermore, they
were able to quantify their results by transforming their problem in the
function field generated by the characteristic root of the recurrence over the
rational function field K(x).

The first author gave suitable extensions of the above results for third
order linear recurring sequences (cf. [6]). Later on, the authors generalized
their results to linear recurring sequences Gn(X) of arbitrary large order
[9]. The conditions are somehow complicated to state, essentially, they en-
sure that there exist valuations in the underlying function field, which have
special properties. Let

G(X,T ) = T d −Ad−1(X)T d−1 − . . .−A0(X) ∈ K[X][T ]

denote the characteristic polynomial of the sequence (Gn(X))∞n=0 and D(X)
be the discriminant of G(X,T ). We let α1, . . . , αr denote the distinct roots
of the characteristic polynomial G(X,T ) in the splitting field L of G(X,T ).
It is well known that (Gn(X))∞n=0 has a nice “analytic” representation. More
precisely, there exist polynomials C1(T ), . . . , Cr(T ) ∈ L[T ] such that

(3) Gn(X) = C1(n)αn
1 + . . . + Cr(n)αn

r ,

holds for all n ≥ 0. Assuming that G(X,T ) has no multiple roots, i.e.
D(X) 6= 0, we have that the Ci(T ) = ci are all constant for all i =
1, . . . , r = d. Assume now that the d-th order (d ≥ 2) linear recurring
sequence (Gn(X))∞n=0 and the polynomial P ∈ K[X] satisfy the following
conditions:

(i) None of the roots and the quotients of distinct roots of the charac-
teristic polynomial of (Gn(X))∞n=0 is an element of K∗,

(ii) degP ≥ 2 and degD ≥ 1,
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(iii) gcd(D,A0) = 1 and
(iv) gcd(D,R(A0, . . . , Ad, G0, . . . , Gd)) = 1,

for some polynomial R(A0, . . . , Ad, G0, . . . , Gd) ∈ Q[A0, . . . , Ad, G0, . . . , Gd]
(for details we refer to [9]). Then equation

(4) Gn(X) = cGm(P (X)),

where c ∈ K∗ = K\{0} is variable, has at most

C(d,A0, D, P ) :=

= e(6d)4d
(

log
(

d2d2
degD(degP + 1)

)

)2d2

(2ed)30d3d!2 deg A0 deg P

solutions (n,m) ∈ Z2 with n,m ≥ 0, n 6= m. We also obtained the result
under the following conditions:

(i) None of the roots and the quotients of distinct roots of the charac-
teristic polynomial of (Gn(X))∞n=0 is an element of K∗,

(ii) degP ≥ 1, and degD ≥ 1,
(iii) degA0 ≥ 1, R(A0, . . . , Ad, G0, . . . , Gd) 6= 0, and
(iv) the set of zeroes of A0 is not equal to that of A0(P ).

Then equation (4) has at most C(d,A0, D, P ) solutions (n,m) ∈ Z2 with
n,m ≥ 0, n 6= m.

For the special case of the equation

(5) Gn(X) = Gm(P (X))

we could even show more. Namely, assuming the conditions from above with

(i’) None of the roots and the quotients of distinct roots of the charac-
teristic polynomial of (Gn(X))∞n=0 is a root of unity,

instead of (i), respectively, we proved that equation (5) has at most

e(12d)6d

,

solutions (n,m) ∈ Z2 with n,m ≥ 0, n 6= m.

Very recently, U. Zannier used elementary method from the theory of
function fields to improve on these results. In fact, he was able to completely
describe the matter: suppose that deg P ≥ 2 and that the recurring sequence
Gn(X) is simple with characteristic roots α1, . . . , αd satisfying that no ratio
αi/αj , i 6= j, lies in K. Then if there are only finitely many solutions m,n
of

Gn(X) = cGm(P (X)), m, n ∈ N,

where c = c(m,n) ∈ K∗ may depend on m,n, their number is at most 8d6.
If there are infinitely many solutions then for suitable r, s ∈ N we have an
identity

Gsn+v0(P (X)) = ηξnGrn+u0(X), n ∈ N, |r| = |s|degP > 0,

for suitable ξ, η ∈ K∗, and two cases may occur, which he calls the “cyclic”
(which denotes essentially the case Gn(X) = Xn, P (X) = Xp) and the



4 CLEMENS FUCHS, ATTILA PETHŐ, AND ROBERT F. TICHY

“Chebyshev” case (which is essentially the example from the motivation,
i.e. Gn(X) = Tn(X), P (X) = Tp(X)). More precisely we have:
Cyclic case: P is of the form λ′ ◦Xp ◦λ for suitable λ, λ′ ∈ PGL2(K). Also,

the αi are in K(X), of the form ciX
δi ◦ λ, for integers δi and ci ∈ K,

Chebyshev case: P (X) = λ′ ◦ Tp ◦ λ, λ, λ′ as above. The αi are quadratic

over K(X) and of the form ci(X ±
√
X2 − 1)δi ◦ λ.

Our aim is to generalize this result to the equation

(6) Gn(x) = cGm(y),

where c = c(m,n) ∈ K∗ may vary with m,n and where x, y are alge-
braically dependent, i.e. a relation Q(x, y) = 0 holds for some polynomial
Q(X,Y ) ∈ K[X,Y ]. Moreover, we want to consider arbitrary linear recur-
ring sequences (Gn(X))∞n=0 (and not only simple linear recurrences as be-
fore). This equation can be understood as an identity in K[X,Y ]/(Q(X,Y )),
which denotes the residue class ring of the curve Q(x, y) = 0. Using the
ideas introduced in [15], we want to give necessary conditions under which
the more general problem has at most finitely many solutions.

Observe that we may assume without loss of generality that Q(X,Y ) is
absolutely irreducible and we will assume this for the rest of the paper.

2. Results

Before we state our results, let us start with a small discussion about the
polynomial Q(X,Y ), which is assumed to be absolutely irreducible. We can
also assume that the leading coefficient of Y in Q(X,Y ) belongs to K∗, or
equivalently that y is integral over K(x). Otherwise, there exists a valuation
ν in the function field K(x, y), which is a pole of y. But this implies by our
equation Gn(x) = cGm(y) that

0 ≤ ν(Gn(x)) = ν(Gm(y)) ≤ ν(y) < 0,

which is a contradiction. This argument is only true if Gn(x) /∈ K, which
we may assume if m,n are large enough (cf. [7, Corollary 3]). Observe that
clearly the Gn(x) are integral (they are polynomials). Because of symmetry,
we can also assume that x is integral over K(y) and therefore that the leading
coefficient of X in Q(X,Y ) does not depend on Y . Therefore, we have

Q(X,Y ) = Y deg QY + q1(X)Y deg QY −1 + . . . + q′rX
deg QX + qr(X),

with q′r ∈ K∗, qi(X) ∈ K[X], i = 1, . . . , r and deg qr(X) < degQX =: r.

We do not immediately start with our special case: first we study the
general situation of intersections of two linear recurrences defined over a
function field. The following proposition is a generalization of [15, Corollary
2] to the case of arbitrary (also non-simple) linear recurring sequences Gn
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and Hn given by

Gn = C1(n)αn
1 + C2(n)αn

2 + . . .+ Cp(n)αn
p ,

Hn = D1(n)βn
1 +D2(n)βn

2 + . . .+Dq(n)βn
q ,

where αi, βj ∈ L∗ and 0 6= Ci, Di ∈ L[X] and L is a function field in one
variable over K, and which is therefore of interest on its own.

Theorem 1. Assume that no αi or βj and no ratio αi/αj or βi/βj , i 6= j
lies in K∗. Then the equation Gn = cHm, c = c(n,m) ∈ K∗ has at most

C(ordGn, ordHn) := 9d4(3d2 + ee
e
20d

+ rd2)

solutions (m,n) ∈ Z2, where d = max{ordGn, ordHn} and r is the rank of
the multiplicative group generated by the αi and βj, unless there are integers
n0,m0, r, s, with rs 6= 0, elements ξ, η ∈ K∗ and polynomials 0 6= P,Q ∈
K[X] such that the identity

Gn0+rm =
P (m)

Q(m)
ηξmHm0+sm

holds for m ∈ Z.
Moreover, in this case we have that there exist S1, . . . , Sp ∈ L[X] such

that

Ci(n0 + rX) = ηα−n0
i P (X)Si(X) and Dπ(i)(m0 + sX) = β−m0

π(i) Q(X)Si(X),

and for the corresponding roots αr
i /β

s
π(i) ∈ K for i = 1, . . . , p = q and where

π is a permutation of the set {1, . . . , p}.

The proof of this result follows the line of proof from [15, Corollary 2]
and uses a result due to Shorey and Tijdeman (see [13, pp. 84-85] and [4,
Lemma 3]). Some more remarks are in order.

Remark 1. First of all, it is quite clear that there can exist infinitely many
solutions and that the statement about the polynomials P,Q is necessary.
Because, if we assume that

Gn = P (n)Sn, Hn = Q(n)Sn,

where P,Q ∈ K[X] and (Sn)∞n=0 is a linear recurring sequences defined over

L, then we have Gn = cHn with c = P (n)
Q(n) for all n ∈ Z.

Remark 2. We want to mention that such a conclusion also appears in
a similar context about arbitrary (non-simple) linear recurring sequences.
Namely in [2], Corvaja and Zannier proved that if Gn/Hn is an integer for
infinitely many n, then there exists a polynomial P such that P (n)Gn/Hn

is a linear recurring sequence for all n in an arithmetic progression.
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Remark 3. If we are interested in solutions of the equation Gn = Hm,
then infinitely many solutions can come only from an identity of the form
Gn0+rm = Hm0+sm for all m ∈ Z, which means that

Ci(n0 + rX)αn0
i = ηDπ(i)(m0 + sX)βm0

π(i), η ∈ K and αr
i /β

s
π(i) ∈ K

for i = 1, . . . , p = q and where π is permutation of {1, . . . , p}.

Remark 4. We mention that the largest part of the upper bound C (the
last two summands in the brackets) comes from the fact that the problem
reduces to estimate the number of zeroes of a linear recurring sequence of
the form P (n) = αnQ(n), where α ∈ K and P (X), Q(X) ∈ K[X]. Of course
this bound can be considerably improved if K = R or if K is an algebraic
number field (in this case the upper bound will also depend on the degree
of the number field). In the general case however, no better upper bound
than the general one (cf. [11, 12]) is known to the authors.

Now, we are ready to come to our special case, where Gn = Gn(x) and
Hn = Gn(y). From the above Theorem it follows at once that either equation
(6) has at most C(ordGn, ordGn) many solutions or an identity of the above
type must hold. We investigate the latter case in this more special situation
and we prove the following theorem.

Theorem 2. Assume that the d-th order (d ≥ 1) linear recurring sequence
(Gn(X))∞n=0 and the irreducible polynomial Q(X,Y ) ∈ K[X,Y ] satisfy the
following conditions:

(i) None of the αi and the ratios αi/αj, i 6= j is an element of K∗,
(ii) degCi + 1 is equal to the multiplicity of αi for all i = 1, . . . , r, and
(iii) the set of zeros of the polynomial A0(X) is not equal to that of

ResY (A0(Y ), Q(X,Y )).

Then there are at most C̃(ordGn) pairs (m,n) ∈ Z2 for which equation (6)
holds, where

C̃(d) := 9d4(3d2 + ee
e
20d

+ rd2)

and where r is the rank of the multiplicative group generated by the αi.

As usual ResY (f, g) denotes the resultant of the two polynomials f, g with
respect to Y .

The question now is the following: do there occur infinite families of solu-
tions other then those in the cyclic and Chebyschev case from above, when
we consider curves Q(x, y) = 0, which are not of the form y = P (x)?

Remark 5. First of all, it is clear that additional infinite families of solu-
tions may appear. For example we have for

Q(x, y) = acxm − aym − b(1 − c) = 0
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with a, b, c ∈ K,m ≥ 3 and P (X) = aXm+b that P (y) = c P (x). Therefore,
we get for Gn(x) = P (x)n, n ∈ Z that

Gn(y) = P (y)n = (cP (x))n = cnP (x)n = cnGn(x)

for all n ∈ Z. By [14, VI.3.3. Example, page 197] the genus of Q(x, y) = 0 is

g = (m−1)(m−2)
2 > 0. This example shows that at least in the case of positive

genus also other infinite families may occur.

Remark 6. Observe that condition (ii) is not too restricitive. It just means
that the recurrence uses its “full” power and can be assured by assuming
that d is the minimal length of a recurrence with is satisfied by (Gn(X))∞n=0.

Remark 7. We may mention that condition (iii) also naturally appears in
the context of the conditions given in our previous papers (see [8, 6, 9]).
Namely, it is easy to see that we have

ResY (A0(Y ), Q(X,Y )) = (lcA0)
deg QY Xdeg QX+deg A0 + . . . ,

where lcA0 denotes the leading coefficient of A0. If we additionally assume
that degX Q ≥ 2, we therefore have a valuation ν with ν(D(y)) > ν(D(x)),
which was the main point in our previous considerations.

We mention that from the proof we see that we must exclude that Ar
0(y) =

cA0(x)
s for some r, s ∈ N, c ∈ K∗. Whenever, we can find

Q(X,Y )
∣

∣A0(Y )r − cA0(X)s,

we have other infinite families as described above (observe that the example
before was constructed with the trivial case Q(X,Y ) = A0(Y )−cA0(X)s). It
follows by Schinzel (see [10, page 58]) that if A0(X) is indecomposable over
K, which means that if A0(X) = F1(F2(X)), F1, F2 ∈ K[X] then degF1 = 1
or degF2 = 1, and degA0 > 31, then A0(Y )−cA0(X)s is irreducible over K.
We conjecture that F (X,Y ) = A0(Y ) − cA0(X)s with A0 indecomposable
(and it is clear that this is needed) and A0(y) 6= B(y)t or −4B(y)4 is always
irreducible. Schinzel mentioned to us that this conjecture - if true - lies
deeper than Capelli’s theorem (e.g. see [10, Theorem 19, page 92]), since it
depends on the characteristic of K while Capelli’s theorem does not.

Remark 8. The motivation to look at this generalisation is the following:
if it would be possible to prove that Gn(x) = cGm(y) with Q(x, y) = 0 has
no solution unless we have a trivial infinite family, then it would be possible
to handle the Diophantine equation Gn(X) = Gm(Y ) in integers X,Y by
the method of Bilu and Tichy [1].
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3. Proof of Theorem 1

We start by rewriting our equation Gn = cHm as

Gn − cHm =

p
∑

i=1

Ci(n)αn
i 1m −

q
∑

i=1

cDi(n)1nβm
i = 0.

We define vectors Ai = (αi, 1) ∈ (L∗)2 for i = 1, . . . , p, Ap+i = (1, βi) ∈
(L∗)2 for i = 1, . . . , q and polynomials Pi = Ci, i = 1, . . . , p, Pp+i = Di, i =
1, . . . , q, respectively.

Now we apply the following theorem due to Zannier (see [15, Theorem 1]
and also [15, Definition 1]):

Lemma 3. Let A1, . . . , Ah ∈ (L∗)r and let P1, . . . , Ph ∈ L[X1, . . . , Xr] =
L[X] satisfy deg Pi ≤ di. Then the set

S = {m ∈ Zr : Pi(m)Am

i , i = 1, . . . , h are linearly independent overK},

(here for A = (α1, . . . , αr) we define Am = αm1
1 · · ·αmr

r ) may be expressed
as a union of no more than

(

d1 + . . .+ dh +

(

h

2

))r

classes, where we say that S ⊂ Zr is a class relative to a nonempty subset
B of {1, . . . , h}, if

(i) for every m ∈ S the elements Pi(m)Am

i , i ∈ B are linearly indepen-
dent over K and

(ii) for some m0 ∈ S the set S is made up by all m satisfying (i) and
such that for i, j ∈ B we have (AiA

−1
j )m−m0 ∈ K∗.

Now, we get by applying Lemma 3 that all solutions (m,n) ∈ Z2 of our
equation are contained in at most

(

ordGn + ordHn +

(

p+ q

2

))2

≤
(

3max{ordGn, ordHn}2
)2

classes (for a definition of classes see Lemma 3 or [15, Definition 2]).
We are going to estimate the number of solutions in each class Ω, corre-

sponding to the subset B = BΩ ⊂ {1, . . . , p + q}. As in the proof of [15,
Corollary 2] it is easy to see by [15, Corollary 1(b)] that there are at most
max{ordGn, ordHn} +

(

p+q
2

)

solutions in every class containing distinct in-
tegers i, j in [1, p] or [p + 1, p + q], respectively, having C1(n) · · ·Cp(n) 6=
0 or D1(n) · · ·Dq(n) 6= 0, respectively. Since these cases appear for at
most max{ordGn, ordHn} many n, we get that the number of solutions
is bounded by

2max{ordGn, ordHn} +

(

p+ q

2

)

≤ 3max{ordGn, ordHn}2.
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In the case that B contains integers i0, j0 + p with 1 ≤ i0 ≤ p, 1,≤ j0 ≤ q
it is also plain (by the proof of [15, Corollary 2]) that the solutions in the
class Ω correspond to integers m such that

(7) Gn0+rm = cHm0+sm

with integers n0,m0, r, s, rs 6= 0.
In this case we first group together in a single γm two exponentials αrm

i

and βsm
j , which are linearly dependent over K. Namely, if αr

i = γ(i,j), β
s
j =

δ(i,j)γ(i,j) with δ(i,j) ∈ K∗ we have

(8) Ci(n0 + rm)αn0
i γm

(i,j) − cDj(m0 + sm)βm0
j δm

(i,j)γ
m
(i,j).

Now, we write

Ci(n0 + rX)αn0
i =

u
∑

l=1

ρlQil(X),

Dj(m0 + sX)βm0
j =

u
∑

l=1

ρlQ̃jl(X),

where the ρl ∈ L∗, l = 1, . . . , u are linearly independent over K and the
Qil, Q̃jl lie in K[X] for each i, j, l. Clearly this is possible for some u with,

u ≤ (p+ q)max{degC1, . . . ,degCp,degD1, . . . ,degDq}.
Thus, (8) becomes

u
∑

l=1

(

Qil(m) − cδm
(i,j)Q̃jl(m)

)

ρlγ
m
(i,j).

Up to now we have rewritten (7) as a K-linear combination of expressions
of the from ρlγ

m
i , where all these expressions are linearly independent and

where γi = γ(i,j) or αi, βj , respectively, depending on whether they could be
paired with some other term in (7) or not. We have two possible cases: those
m for which all coefficients vanish and those for which not all coefficients
vanish. In the latter case the elements ρlγ

m
i are linearly dependent over

K, which can happen (by [15, Lemma 2]) for at most
(2(ordGn+ordHn)−1

2

)

many m.
In the first case all terms in Gn0+rm must be paired with the terms in

Hm0+sm, so we have p = q and u ≤ 2ordGn. Moreover, there exists a
permutation π of the set {1, . . . , p} which pairs each αi with some βj = βπ(i)

such that (7) can be rewritten as

p
∑

i=1

u
∑

l=1

(

Qil(m) − cδm
i Q̃π(i)l(m)

)

ρlγ
m
i = 0.

For simplicity we have written here γi, δi instead of γ(i,π(i)), δ(i,π(i)), respec-
tively. Observe that there are at most max{ordGn, ordHn} many m for
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which Ci(n0 + rm) or Dj(m0 + sm) = 0. For all other m we have

Qil(m)

Q̃π(i)l(m)
δ−m
i = c

(recall that c here may depend on m) for all i, l or

(9)
Qil(m)

Q̃π(i)l(m)

Q̃π(j)r(m)

Qjr(m)

(

δj
δi

)m

= 1

for all i, l, j, r.
Now, we pause for a moment to cite the following result from [4, page

148].

Lemma 4. Let P ∈ Q(X) be a rational function with no poles outside the
disc {z ∈ C : |z| ≤ A} and let α ∈ Q. If there are infinitely many pairs of
integers m,n with

m > n ≥ A, P (m)αm = P (n)αn,

then P is constant and α is a root of unity.

We use a specialization argument to reduce our case to the above lemma.
For this let U ⊂ K be a finite set consisting of all transcendental elements
from the Qil, Q̃π(i)l and δi for all i, l, together with all possible differences
and all multiplicative inverses of these elements. Then by [5, Lemma 3.1]
there exists a ring homomorphism ϕ : Q[U ] −→ Q whose restriction to Q is
the identity. Applying this map to (9) leads to

(10)
ϕ(Qij(m))

ϕ(Q̃π(i)j(m))

ϕ(Q̃π(j)r(m))

ϕ(Qjr(m))

(

ϕ(δj)

ϕ(δi)

)m

= 1.

Now, if there are infinitely many such m, then there are infinitely many m,n
such that

ϕ(Qij(m))

ϕ(Q̃π(i)j(m))

ϕ(Q̃π(j)r(m))

ϕ(Qjr(m))

(

ϕ(δj)

ϕ(δi)

)m

=

ϕ(Qij(n))

ϕ(Q̃π(i)j(n))

ϕ(Q̃π(j)r(n))

ϕ(Qjr(n))

(

ϕ(δj)

ϕ(δi)

)n

.

Therefore, max{m,n} −→ ∞ and the above lemma implies that ϕ(δj/δi)
and therefore also δj/δi is a root of unity. Moreover,

Qil(X)

Q̃π(i)l(X)
=

Qir(X)

Q̃π(i)r(X)
and

Qjl(X)

Q̃π(j)l(X)
=

Qjr(X)

Q̃π(j)r(X)

differ just by a constant (in fact again a root of unity) for all i 6= j, l 6= r
(observe that the equalities follow from (10) at once). It follows that there
exist polynomials P,Q ∈ K[X] such that

P (X)S′

il(X) = ηiQil(X), Q(X)S ′

il(X) = η̃π(i)Q̃π(i)l(X)
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for all i, l with ηi, η̃π(i) ∈ K (independent of l) and for some polynomials
S′

il(X). From this discussion it follows that this case can only hold for all m
in the intersection of certain arithmetic progressions, which is either empty
or again an arithmetic progression. Moreover, we see that in this case we
have η̃π(i)/ηi = η with η a suitable root of unity. Therefore, also the second
part of the conclusion of Theorem 1 follows from this.

Further, equation (10) can have finitely many solutions in the following
two cases: either ϕ(δj)/ϕ(δi) is a root of unity or not. In the second case
the number of m satisfying (10) can be bounded by the zero multiplicity of
the underlying linear recurring sequence, hence by

exp(exp(exp(20(ordGn + ordHn)))

by [11, 12], since the degrees of the polynomials are bounded by the order
of the recurrences. On the other hand, if ϕ(δj)/ϕ(δi) is a root of unity
of order ` say, then in the ` arithmetic progressions m = k` + r, 0 ≤ r ≤
` − 1, we can bound the number of m’s by the degrees of Qil(X)Q̃jr(X)

and Q̃il(X)Qjr(X), respectively. Therefore, we can bound the number of
solutions coming from this case by the rank of the multiplicative group
generated by α1, . . . , αp, β1, . . . , βp, which is an upper bound for `, times
ordGn + ordHn.

Altogether, we see that there are at most C(ordGn, ordHn) solutions,
which do not come from a trivial relation, which finishes the proof. �

4. Proof of Theorem 2

We already know that we have to study the equation

(11) Gn0+mr(x) =
P (m)

Q(m)
ηξmGm0+ms(y)

with ξ, η ∈ K∗, P (X), Q(X) ∈ K[X] and with integers n0,m0, r, s, rs 6= 0,
which is an identity in the function field K(x, y). Moreover, we have

Gn(x) = C1(n)αn
1 + . . .+ Cp(n)αn

p ,

Gn(y) = D1(n)βn
1 + . . .+Dp(n)βn

p ,

where αi are the zeros of G(x, T ) and βj are the zeros of G(y, T ), respectively.
Obviously, the field L0 := K(x, α1, . . . , αp) and L1 := K(y, β1, . . . , βp) are
isomorphic over K and we denote the isomorphism (which sends x 7→ y and
αi 7→ βi) by ψ : L0 → L1.

From Theorem 1 we know that there are polynomials S1(X), . . . , Sp(X)

and a permutation π of {1, . . . , p} such that Ci(n0+rX) = ηα−n0
i P (X)Si(X),

Dπ(i)(m0 +sX) = β−m0

π(i) Q(X)Si(X) and αr
i /β

s
π(i) ∈ K for i = 1, . . . , p. Since

by the above isomorphism ψ, we have that αi and βi have the same multi-
plicity and therefore we have degCi = degDi for all i = 1, . . . , p, it follows
that

deg Sπ(i) = deg Si + degQ− degP
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for all i = 1, . . . , p. This implies

deg Sπk(i) = deg Si + k(degQ− degP )

for every k ∈ N, where πk denotes as usual the k-th iterate of the map π.
Let ` be the order of π. Then, we get deg Si = deg Si + `(degQ − degP )
and therefore degQ = degP . This means that degCi = degDπ(i) and by
condition (ii) that αi and βπ(i) have the same multiplicity as roots of the
characteristic polynomial G(x, T ) and G(y, T ), respectively.

The proof of Theorem 2 now follows easily from what we have proved
up to now. Namely, by assuming that our equation has infinitely many
solutions we have that the characteristic roots of Gn(x) and Gn(y) satisfy

αr
i = cβs

π(i),

where π is a permutation of the set {1, . . . , p} and c ∈ K∗ (here c may
depend on i). Moreover, the multiplicities of αi and βπ(i) are the same. By
multiplying all these relations according the multiplicities, we therefore get

A0(x)
r =

p
∏

i=1

deg Ci+1
∏

j=1

αr
i =

p
∏

i=1

deg Ci+1
∏

j=1

cβs
π(i)

= c̃





p
∏

i=1

deg Dπ(i)
∏

j=1

βπ(i)





s

= c̃A0(y)
s,

where A0 is the constant polynomial in the linear recurring equation. But
now, condition (iii) of our assumptions excludes that this equation can hold.
Therefore, we obtain a contradiction, which shows the finiteness of the num-
ber of solutions in this case. �
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