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Abstract. It is well known that the trisection of an angle with compass
and ruler is not possible in general. What is not so well known (even if it
is folklore in the community of geometric constructions and mathemat-
ical paper folding) is that angle trisection can be done with other tools,
especially by an Origami construction. In this paper we briefly discuss
this construction and give a geometric and an algebraic proof that the
construction is correct. We also discuss which kind of problems Origami
can solve and which other tools can be used to trisect an angle.
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1. Introduction

One of the famous old problems from antiquity is to trisect a given angle
by using only a compass and a ruler. In other words: By using only a tool
to draw a straight line segment through any two points and a tool to draw
circles and arcs and duplicating lengths, one wants to construct in a finite
number of steps two half-lines that comprise one third of an angle that itself
is already given in terms of two half lines comprising it. The proof that this
venture is indeed impossible in general is a prime example of how axiomatic
mathematics works.

We start with algebraization of this problem. Let a subset M ⊆ A2(R) of
the affine plane and two different points 0, 1 ∈ M be given. The fact that we
have 0 and 1 is equivalent to the existence of a coordinate system including
the unity length by setting (0, 0) = 0, (1, 0) = 1. A line in the affine plane is
given by two points. A circle is given by the mid-point and two other points
the distance between them being the radius of the circle. In the coordinate
system the points on a line satisfy a linear equation and the points on a
circle can be described as the solution set of a quadratic equation. Let M
be the set of all points that can be constructed in a finite number of steps
starting with points from M by the following axioms:

†This paper was initiated by a TV report “Origami löst unlösbare Probleme” in the science
magazine Einstein of the Swiss national television SF1 broadcasted on April 9, 2009, in
which the author got involved after a request of the producer.
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(1) For any two lines each given by two points from M, we can construct
the intersection point.

(2) Given a circle and a line both defined by points from M, then we
can construct all intersection points of the circle with the line.

(3) Given two non-identical circles by points from M, then we can con-
struct all the intersection points of the two circles.

In fact it is easy to see that (3) follows from (1) and (2) and that, by the
Mohr-Mascheroni theorem (cf. [23, 16]), all constructions can be formulated
by using the compass alone. An element z ∈ R is called constructable if the
point (z, 0) is in M. Let K(M) denote the set of all constructable elements
and Q(M) the field generated over Q by the coordinates of the points in
M. It is well known that the following statements are equivalent

(i) z ∈ K(M)
(ii) There is a sequence of quadratic field extensions K0 := Q(M) ⊂

K1 ⊂ K2 ⊂ · · · ⊂ Kn ⊂ R with z ∈ Kn.
(iii) z is contained in a Galois-extension K of Q(M) with [K : Q(M)]

being a power of 2.

The equivalence of (i) and (ii) is elementary; the equivalence to (iii) however
involves quite some algebra, especially Galois theory and the fact that every
2-group is solvable.

By using the Chebyshev identity cos(3ϕ) = 4 cos3(ϕ)− 3 cos(ϕ), we con-
clude from the equivalences above that the angle θ = 3ϕ can be trisected by
compass and ruler in a finite number of steps if and only if the polynomial
4X3 − 3X − cos(θ) is reducible over the field Q(cos(θ)). Especially, we get
that π

3
cannot be constructed by compass and ruler since X3 − 3X − 1 and

so also 4X3 − 3X − 1
2
is irreducible over Q. Observe that special angles can

certainly be trisected, e.g. just look at the trivial example θ = 0.
In summary the bottom line is that angle trisection involves the solution

of an irreducible polynomial of degree three whereas constructable numbers
are only roots of polynomials of degree a power of two.

In the next section we show how angle trisection can be solved by Origami.
This is in fact a folklore result in the community of mathematical paper fold-
ing and origami mathematics which has already been described in numerous
papers. Nonetheless, we present the construction and prove its correctness
again, we discuss the background from mathematical paper folding, we give
further examples of classical problems that can be solved by Origami, and
finally we also discuss some further methods of angle trisection using other
tools. For a general account on geometric constructions we refer to [23] and
two nice books on origami are [21, 14].

2. Angle trisection with Origami

Somewhat surprisingly and in contrast to constructions by compass and
ruler angle trisection can be done by Origami (see e.g. [5, 8]). To start
with we describe the rules that are allowed to fold a given sheet of paper,
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namely: All lines are defined by either the edge of the paper or a crease on
the paper; all points are defined by the intersection of two lines; all folds
must be uniquely defined by aligning combination of points and lines and a
crease is formed by making a single fold, flattening the result and (optionally)
unfolding. The last rule is somewhat restrictive, because it excludes multiple
folds that are frequently used in more complicated Origami figures.

Now we give the construction of the angle trisection that was discovered
by H. Abe (cf. [7]) and that was mentioned again at several places since
then. We start with a square (or rectangular) paper and denote the corner
points (starting with the top left and enumerating the others anti-clockwise)
by A,B,C,D, respectively. Moreover, we assume that there is given a crease
starting in B that meets the line segment AD in the point P (see Fig. 1).

Fig. 1

Now we perform the following steps in order to trisect the angle
θ = ∢(CBP ):

Angle trisection with Origami

i) Make a crease by folding and unfolding edge BC parallel to AD; the
point on AB is denoted by E.

ii) Fold edge BC up to the crease from step i) and unfold. The new
point G is the mid-point of the segment BE.

iii) Make a fold such that the point E lies on the crease BP and simul-
taneously B lies on the crease obtained in step ii).

iv) Crease along the existing crease through point G, creasing through
both layers.

v) Unfold.
vi) Extend the crease from step iv) to the point B and fold the edge

BC to lie on this crease and unfold.
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vii) The angle θ is trisected by ∢(CBB1).

Of course we still have to prove that this construction really works and
we shall give two proofs of the following statement.

Theorem 1. The Origami construction described above trisects the given

angle θ.

Geometric proof of the correctness. Let ϕ = ∢(CBB1). By construction the
trapezoid BB1E1E is isosceles. Thus the triangle BB1M is also isosceles. It
follows that ϕ = ∢(MB1B) = ∢(B1BM) where we have also used that the
line starting at G is parallel to the line BC. Now we use the symmetry of
the triangle EBB1 to see that ϕ = ∢(EB1G). Finally, again by symmetry,
the triangle BB1N is also isosceles and therefore we get ϕ = ∢(MBN).
This shows that θ = ∢(CBP ) = 3ϕ or ϕ = θ

3
. �

Alternatively we can introduce a coordinate system and then derive
the same result by using polynomial equations that come from Abe’s
construction. We also give this proof.

Arithmetic proof of the correctness. Let B be the origin of the coordinate
system and let BC lie on the x- and BA on the y-axis. Denote the coordi-
nates of the yet unknown points E1, B1 by E1 = (α, β), B1 = (γ, δ). Then
we have E = (0, 2δ), B = (0, 0). We can still fix the unity of the coordi-
nate system and we choose it such that γ2 + δ2 = 1. This can be assumed
without loss of generality. By construction it follows that α2 + β2 = 1 and
thus B1 = (cos(θ), sin(θ)) where as before we have θ = ∢(CBP ). We will
use the following two conditions that are satisfied by construction: Firstly
the line segment BE has the same length as B1E1, which gives the equation
4δ2 = (α− γ)2+(β− δ)2, and secondly EE1 is parallel to BB1, which gives

α

β − 2δ
=

γ

δ
.

Thus we have the following four relations:

f1 = γ2 + δ2 − 1 = 0
f2 = 3δ2 + 2βδ − α2 + 2αγ − γ2 − β2 = 0
f3 = αδ + 2γδ − βγ = 0
f4 = α2 + β2 − 1 = 0

Our goal is to deduce an equation involving γ and α that is independent of
β, δ. We get 3f1 − f2 = 0 = 4γ2 − 2αγ − 2βδ + α2 + β2 − 3. By multiplying
with α+2γ and adding 2βf3 we get 8γ3 − 6γ +α3 − 3α+αβ2 = 0. Now we
subtract αf4 to get 8γ3−6γ−2α = 0. Dividing by 2 gives 4γ3−3γ−α = 0.
We have shown that γ is a root of the polynomial 4X3 − 3X − α with
α = cos(θ) and thus we have indeed γ = cos( θ

3
) as wanted. �
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The strategy of variable elimination in the arithmetic proof is motivated
by calculating the Gröbner basis of the ideal I generated by f1 = Z2+W 2−
1, f2 = 3W 2 + 2YW −X2 + 2XZ − Z2 − Y 2, f3 = XW + 2ZW − Y Z, f4 =
X2 + Y 2 − 1 with respect to some term order. From the proof we get

(3X + 6Z)f1 − (X + 2Z)f2 + 2Y f3 −Xf4 = 2(4Z3 − 3Z −X).

We briefly give some more details: By using the lexicographic term order ≻
with Y ≻ W ≻ X ≻ Z we get {Y −4WZ2+W,W 2+Z2−1, X−4Z3+3Z} as
the reduced Gröbner basis for I; in particular this implies that f1, f2, f3, f4
do not generate the polynomial ring Q[X,Y, Z,W ]. We could have proved
also other relations, e.g., taking the lexicographic term order with X ≻ Z ≻
Y ≻ W gives the reduced Gröbner basis {X +4ZW 2−Z,Z2+W 2− 1, Y +
4W 3 − 3W} for I and therefore we get 4δ3 − 3δ + β = 0 which proves
the correctness once again. The use of Gröbner basis is the algorithmic link
between algebraization and proving that certain algebraic relations hold. We
mention that such techniques are also used in [2].

Observe that there are also other Origami constructions that trisect a
given angle (cf. [20, p. 34ff] and the footnote in [5, p. 285]). In conclusion we
see that Origami can solve at least some equations of degree three. When
looking at the steps in the construction of the Origami angle trisection, it is
clear that the critical step is step iii). The dashed line in Fig. 1 is the crease
needed for that step. With the notation of the arithmetic proof, the equation
for this crease is given by 2(γX + δY ) = 1 where γ satisfies the equation
4γ3 − 3γ − α = 0 and similarly δ satisfies the equation 4δ3 − 3δ + β = 0.
In other words finding that fold is equivalent to solve these particular cubic
equations. The question arises which numbers can be constructed by using
Origami. We shall discuss this in the next section.

3. Intermezzo on mathematical paper folding

The discussion on the constructability by Origami can be started similarly
to the classification of constructable numbers in Section 1. We have already
said what we mean by a line and a point and which folding operations are
allowed. Let N ⊆ A2(R) be a set with 0, 1 ∈ N . We denote by N the set of
all points in the plane that can be constructed in a finite number of steps
by the following operations:

(1) For any two points from N , there is a unique fold through both of
them.

(2) Given two points P1, P2 ∈ N , then we can fold P1 onto P2.
(3) Given two lines defined over N , then we can fold one line to lie on

the other one.
(4) Given a point P ∈ N and a line defined over N , there is a fold

perpendicular to the line passing through the point P .
(5) Given two points P1, P2 ∈ N and a line defined over N , then there is

a fold that places P1 on the line such that the crease passes through
P2.
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(6) Given two points P1, P2 ∈ N and two lines defined over N , then
there is a fold that places P1 on the first and P2 on the second line.

(7) Given a point P ∈ N and two lines defined over N , then there is a
fold perpendicular to the second line that places P on the first line.

The first six axioms were found by H. Huzita (cf. [18] and also [13]) and the
seventh by K. Hatori and independently by J. Justin and by R. Lang. They
are called the Huzita-Hatori axioms for origametric geometry (sometimes the
Huzita-Justin axioms). It was proved by Lang that these axioms completely
describe all operations that can be performed by paper folding (see [20])
and therefore they are now the fundamentals of the mathematical theory of
paper folding.

We say that z ∈ R is Origami-constructable if the point (z, 0) is in N .
Let O(N ) be the set of Origami-constructable numbers and Q(N ) the field
generated over Q by the coordinates of the points in N . By examining the
axioms it can be shown that the following theorem holds (we do not give all
details in the proof):

Theorem 2. The following statements are equivalent:

(i) z ∈ O(N )
(ii) There is a sequence of quadratic or cubic field extensions K0 :=

Q(N ) ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kn ⊂ R with z ∈ Kn.

(iii) z is contained in a Galois-extension K of Q(N ) with [K : Q(N )] =
2a3b for some non-negative integers a, b.

Proof. The equivalence of (i) and (ii) follows from algebraization of the ax-
ioms, which shows that axioms (1)-(7) are equivalent to Origami-construct
the roots of any irreducible polynomial of degree at most three with coeffi-
cients that are already Origami-constructable. For this see [20] or [1, 19].

The equivalence of (ii) and (iii) follows as in the classical case (cf. [3]):
Given (ii) we just take the normal closure of Kn, which is a Galois-extension
and of order divisible only by 2 and 3 since only elements of this order are
used to generate it. Conversely, given (iii) we conclude by a famous theorem
of Burnside (cf. [4]) that the Galois group of K is solvable. This means that
there is a subnormal series whose quotients are cyclic groups of order 2 or
3. By Galois theory this precisely corresponds to a tower of field extensions
as claimed in (ii). �

We give a brief discussion on the axioms and their role concerning the
quadratic and cubic field extensions above. The axioms (1)-(5) and (7) are
equivalent to solve any quadratic equations with coefficients in O(N ). In
fact already the points that can be constructed by (1)-(5) are the same
as the constructable points K(N ) by compass and ruler. Moreover, (2),(3)
and (5) are equivalent to (1)-(5). Axiom (7) just allows to solve certain
quadratic equations. Axiom (6) however is equivalent to solve arbitrary cubic
equations. In [20] this is deduced directly by studying the relevant algebraic
equations. R. Alperin in [1] identified the pair given by a point and a line
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by a conic whose focus is the given point and directrix is the given line and
uses some basic algebraic geometry. In this language (6) is equivalent to
construct the simultaneous tangent line to the two parabolas with the given
data of foci and directrices. From there it is also easy to see that conversely
any cubic equation can by solved by this Origami step: Take the conics

(

Y − a

2

)2

= 2bX, Y =
1

2
X2,

with Origami-constructable foci and directrices; then it is easy to verify that
the common tangent has slope z satisfying z3 + az + b = 0; hence we can
solve any cubic equation with specified a, b ∈ O(N ) (see [1, p. 129]).

We mention that Hatori has shown that in fact axiom (6) is enough and
the others follow from it when we interpret a line placing P onto a given line
on which P is already on either as a line perpendicular to it or a line passing
through P . Finally, we remark that Alperin and Lang recently considered
constructions where simultaneous folds are allowed and they formalized this
in multi-fold axioms (cf. [2]); this in turn makes it possible to solve also
algebraic equations of higher degree and to perform, for example, the quin-
tisection of an angle.

In the next section we will discuss some further Origami constructions to
well-known problems.

4. Further Origami constructions

Motivated by the fact that Origami can solve old problems we can look for
other such results. Of course the antique problems of squaring or rectifying
the circle are still out of reach since that would mean to construct the
transcendental number π (but compare with [15]).

Fig. 2

However, the Delian problem of doubling the cube can be solved by Origami
since it just means to construct the cube root of 2, i.e. the real solution to
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the cubic equation X3 − 2 = 0, which in contrast is again not possible by
compass and ruler. The construction is like this (see Fig. 2):

Squaring the cube with Origami

i) Take a square sheet of paper and divide it parallel to BC into three
equal parts. We get two lines; the vertex of the lower line on the edge
CD is denoted by P .

ii) Make a fold such that C is on the edge AB and the point P is on
the upper line that divides BC into three parts.

iii) The ratio of lengths of AC1 to C1B is 3
√
2.

This construction can be found in [24], where the correctness is also dis-
cussed. There are also other Origami constructions for 3

√
2, e.g. based on

solving the cubic equation X3 − 2 = 0 (see [20]).
Another classical question is which regular polygons can be constructed

by compass and ruler. It is well known (see [25]) that the regular n-gon
is constructable if and only if n = 2kp1 · · · pr for a non-negative integer
k and distinct primes (called Fermat primes) of the form pj = 2kj + 1
for j = 1, . . . , r. Analogously, one can show (cf. [11, 6]) that a regular n-
gon is Origami-constructable if and only if n is of the form 2a3bp1 · · · ps
for non-negative integers a, b and distinct primes (called Pierpont primes)
of the form pj = 2aj3bj + 1 for j = 1, . . . , s. Equivalently, the regular n-

gon is constructable if and only if ϕ(n) = 2l for a non-negative integer
l, and Origami constructable if and only if ϕ(n) = 2c3d for non-negative
integers c, d, where ϕ denotes Euler’s totient function. An explicit folding
construction can be found in [9] for n = 7 and in [10] for n = 9. We mention
that this implies that Origami solves also certain higher degree equations
like X7−1 = 0 or X9−1 = 0. Since we have Theorem 2 this of course implies
that these equations can be reduced to solve cubic and quadratic equations
only, for X7− 1 = 0 we see that 2 cos(2π

7
) is a root of X3+X2− 2X− 1 = 0

and similarly cos(2π
9
) is a root of 8X3 − 6X + 1 = 0. For more details we

also refer to [5].

5. Angle trisection with other tools

Finally, we come back to our main topic and discuss some other methods
to trisect a given angle. In fact it is well known (cf. [23]) that angles can
be trisected if one slightly changes the rules of having compass and ruler. It
goes back to Archimedes who used neusis constructions to trisect an angle
by compass and a marked ruler. This construction is somewhat similar to
what happens with Origami since there we have also marked a line segment
(namely BE in the notation of Section 2) and moved it such that it appeared
with certain properties (namely the vertices lie on certain lines).

The neusis construction of Archimedes on the other hand uses an anchor
where the ruler is fixed and then it is arranged such that the marked segment
is at a specific position.
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Fig. 3

Assume that the angle θ is given by the line AB and the horizontal line
(see Fig. 3). Then the construction goes like follows:

Angle trisection with compass and marked ruler

i) Draw a circle with mid-point B and radius equal to the length of
AB.

ii) Mark length AB at the ruler (if the ruler has a given mark then
extend the line segment AB such that it has this length).

iii) Anchor the ruler at point A and move it until one end of the mark
is on the circle and the other one is on the horizontal line.

iv) ∢(ADB) = θ
3

It is not too hard to check that the construction really works. Thus by
marking the ruler one can solve at least some cubic equations (namely those
with all roots real). For more details see [12, Chapter 6, pp. 259ff]. In fact
there it is shown that the set of real numbers that are constructable by using
compass and a marked ruler is the same as the set of Origami-constructable
numbers (cf. [11] and [12, Theorem 31.5 and Proposition 31.7]) since we have
the following equivalence:

(i) z ∈ R is constructable in a finite number of steps by compass and
marked ruler starting from a given set M ⊆ R2 with 0, 1 ∈ M.

(ii) There is a sequence of quadratic or cubic field extensions K0 =
Q(M) ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kn ⊂ R with z ∈ Kn.

(iii) There is a sequence of field extensions K0 := Q(M) ⊂ K1 ⊂ K2 ⊂
· · · ⊂ Kn ⊂ R where Ki+1 is obtained from Ki by adjoining

√
a with

a ∈ Ki, a > 0, 3
√
a with a ∈ Ki or cos(

θ
3
) with cos(θ) ∈ Ki such that

z ∈ Kn.
(iv) There is a Galois-extension K over Q(M) with z ∈ K and [K :

Q(M)] = 2a3b for non-negative integers a, b.

This clearly also leads to the same conclusion for the construction of regular
polygons as in the Origami case.
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Other methods of trisecting an angle use curves other than circles; such
curves are called trisectrices. For example one can use the limacon that is
given in polar form by r = 1

2
+ cos(θ), the cycloid of Ceva that is given by

r = 1+ 2 cos(2θ) or the quadratrix of Hippias that is given in implicit form
by x = y cot(π

2
y).

We briefly describe the construction by using the limacon (see [22, Part
VI, 1.]): At the origin the curve has a double point and it consists of two
closed loops the smaller one contained in the larger one. We put the angle
θ that we want to trisect between the lines where the segment AB is on the
x-axis and B is the origin.

Fig. 4

Angle trisection with limacon

i) Fit AB such that it fits exactly in the smaller loop, i.e. the point A
is on the limacon.

ii) Extend the line segment BC such that its length is equal to AB.
iii) Draw the line AC.
iv) The point D in which it intersects the inner loop of the limacon has

the property θ = ∢(ABC) = 3∢(ABD) and we have trisected the
angle.

Even other tools like a protractor, a trisection tool, a tomahawk or a
carpenter’s square can be used and are in fact used in daily life for doing
the job. For this and other methods we refer to [22] that gives a nice and
amusing collection of trisection methods.
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