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Preface

The study of Diophantine equations, in general terms, is the study of solvability of
equations in integers. Although researches in this field have their roots in antiquity
and a history of the subject amounts more or less, to a history of mathematics itself,
it is only in relatively recent times that there have emerged any general theories, and
we shall begin in 1900 by referring to Hilbert’s famous list of problems.

The tenth of these asked for a universal algorithm for deciding whether or not a
given Diophantine equation, that is, an equation f(zy,...,z,) =0, where f denotes a
polynomial with integer coefficients is solvable in integers x1,...,x,. Though Hilbert
posed his question in terms of solvability, there are, of course, many other sorts of
information that one might like to have; for instance, one might enquire as to whether
a particular equation has infinitely many solutions, or one might seek some bounds on
the number of solutions. In 1970, Matijasevic, proved that a general algorithm of the
type sought by Hilbert does not in fact exist.

The first major advance towards a coherent theory was made by Thue in 1909 when
he proved that the equation F'(z,y) = m, where F' denotes an irreducible binary form
with integer coefficients and degree at least 3, possesses only a finite number of solu-
tions in integers z, y.

In the midth of the 20th century two main branches have their origins. The first
one started 1955 with Roth’s Theorem, for which Roth received the Fields medal. This
theorem was generalized and quantified between 1965 and 1972 by W. M. Schmidt and
then by many other authors; a development that had its climax in the various quantified
versions of Schmidt’s Subspace Theorem. We are going to use these theorems frequently,
especially they will enable us to calculate explicit upper bounds for the number of
solutions of certain classes of Diophantine equations. Thereby, a remarkable feature is
that these bounds will depend on very few parameters.

The second development has its roots in about the same time. In 1968, A. Baker
derived lower bounds for the absolute value of linear forms of logarithms in algebraic
numbers. This was a breakthrough in the field of effective methods which made it pos-
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sible to compute upper bounds for the solutions themselves. For example Baker himself
gave upper bounds for the solutions of the Thue equation.

In the first chapter, we will survey these main developments (this is mainly due to
R. Tijdeman and can be found in [36, Chapter II]). Furthermore, we will collect some
very important general methods to quantify the number of solutions of Diophantine
equations. The first subsection will be about W. M. Schmidt’s celebrated Subspace
Theorem. In the second subsection, we will give applications of the Subspace Theorem
to S-unit equations and then in turn to the zero-multiplicity of nondegenerate linear
recurring sequences. In the third subsection, we will introduce Baker’s method on linear
forms of logarithms in algebraic numbers and in the fourth subsection, we state the
analog of Baker’s method in algebraic function fields of one variable which is referred
to as Mason’s inequality. Here we also collect applications to S-unit equations and to
hyperelliptic equations in function fields.

The second chapter is devoted to the number of perfect powers in a linear recurring
sequences. We will consider the Diophantine equation

G, = Ez,

where (G,)%°, is a linear recurring sequence, F is a nonzero and ¢ a positive integer. In
the introductory section, we survey some known results concerning this type of equa-
tion, in the second subsection we present our results, in the third subsection, we collect
some useful lemmas and in the last subsection we present the proofs of the theorems.
This chapter is identical with a joint paper with R. F. Tichy [51].

The third chapter is a generalization and continuation of the quantitative work
done in the previous chapter. Now, we will consider the equation

f(Gna .I) =0,

where f is polynomial in two variables that is monic in = and (G,,)%2, is again a linear
recurring sequence. We will present quantitative finiteness results for this Diophantine
equation in subsection two and prove them in the following subsections.

In the fourth chapter, we turn to finiteness results concerning the equation
Gp(z) = Gu(P(z))

where (G,(x))%, is a sequence of polynomials satisfying a second order linear recurring
sequence and P(z) is a fixed polynomials with deg P > 1, i.e. we consider identities
of polynomials. Under certain conditions, we will quantify the number of solutions
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(n,m) € Z?* of this equation. After a introductory section, we will present the new
theorems and then, we will prove them in the following subsections. This chapter is
identically equal to a joint paper with R. F. Tichy and A. Peth§ [49].

The fourth chapter is a continuation of the previous chapter on the equation
Gn(x) = Gm(P(x))

where now (G, (z))2, denotes a sequence of polynomials satisfying a third order linear
recurring sequence. Because of Cardano’s formulae, it is possible to use the ideas from
the second order case and to derive quantitative finiteness results in this case too. This
chapter is equal to a manuscript which is joint work with R. F. Tichy and A. Pethé [50].

The last two chapters are about Diophantine m-tuples. Thereby, we will call a set
{ai, ..., an} of positive integers a Diophantine m-tuple with property D(n) for n € Z
if the product of any two of them increased by n is a perfect square, i.e. a square of a
positive integer. Here, we will not study the classical case but analogues problems for
polynomials (which was already studied e.g. by Jones in [55], [56]). In chapter five, we
prove that there does not exist a set of four polynomials with integer coefficients such
that the product of two of them minus one is a square of a polynomials with integer
coefficients. This chapter is equal to a joint paper with A. Dujella [33].

In the last chapter, we will consider the case where n is a linear polynomial. We
will show that there are at most 26 polynomials with integer coefficients such that the
product of two of them plus a linear polynomial is a square of a polynomial with integer
coefficients. This chapter is equal to a manuscript which is joint work with A. Dujella
and R. F. Tichy [34].

Last but not least, I want to express my gratitude to Prof. Robert F. Tichy, who
is the advisor of this thesis and who is coauthor of many of the papers forming the
main part of this work. Moreover, I want to thank the other coauthors of the papers in-
volved, namely Prof. Andrej Dujella from Zagreb, Croatia and Prof. Attila Peth6 from
Debrecen, Hungary. I am most thankful to them for valuable suggestions and fruitful
discussions. For financial support, I am indebted to the Austrian Science Foundation
(FWF - “Fond zur Foérderung der wissenschaftlichen Forschung”), grant S8307-MAT.
Finally, I am grateful to my family, especially to my father, for permanent encourage-
ment and support.

Graz, January 2002 CLEMENS FUCHS
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Chapter 1

General methods for quantitative
finiteness results

1.1 The Subspace Theorem

In 1844, Liouville proved that transcendental numbers do exist. He derived this result
from the following approximation theorem.

Theorem 1.1. (Liouville) Suppose « is a real algebraic number of degree d. Then
there is a constant c(a)) > 0 such that
b

a——|>cla)g
q\ (@)

—d

for every rational number p/q, q > 0 distinct from .

o0

Using this result, Liouville deduced that numbers like )~
Furthermore, Liouville’s Theorem implies that the inequality

2" are transcendental.

a—I—)‘ <q* (1.1)
q

has only finitely many rational solutions p/q if u > d. Thue showed in 1909 that (1.1)
has only finitely many solutions if u > d/2+ 1. Then, Siegel (1921) showed in his thesis
that this is already true if u > 2v/d. A slight improvement to p > v/2d was made by
Dyson in 1947. Finally, Roth proved in 1955 that (1.1) has only finitely many solutions
if u > 2. He received the Fields medal for this achievement. So, for d > 2 this theorem,
together with Lagrange’s Theorem from 1770 which says that every irrational real o
admits infinitely many rational p/q such that
p‘ 1
a— - )
ql ¢

6
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shows that the number 2 as exponent is best possible. For d = 2 Liouville’s Theorem
is stronger than Roth’s one.

In a series of papers published between 1965 and 1972, W.M. Schmidt made an
important step forward. One of his results is the following extension of Roth’s Theorem.

Theorem 1.2. (W. M. Schmidt) Suppose « is a real algebraic number. Let k > 1
and & > 0. Then there are only finitely many algebraic number B of degree < k with

o= B < H(B)~*H1+)
where H(B3) denotes the classical absolute height.
This result follows by applying the so-called Subspace Theorem which, in its sim-
plest form, reads as follows. For x = (x1,...,2z,) € Z™ put
x| =1/22 4+ 22.
Then we have

Theorem 1.3. (Subspace Theorem, W. M. Schmidt) Suppose Li(x),..., L,(x)
are linearly independent linear forms in x = (x1,...,2,) with algebraic coefficients.
Given § > 0, there are finitely many proper linear subspaces Ty, ..., T, of R" such that
every integer point x # 0 with

|Ly(x) -+ L (x)| < [x|7
lies in one of these subspaces.

In fact, Roth’s Theorem is equivalent to n = 2 of the above stated theorem.
Up to now, apart from Liouville’s Theorem, all results stated in this section are
ineffective, that is, the method of proof does not enable us to determine the finitely

many exceptions. However, the method makes it possible to derive upper bounds for
the number of exceptions. This was proved by Schmidt in 1989 (see [79]).

Theorem 1.4. (Quantitative Subspace Theorem, W. M. Schmidt) Let L., ...,
L, be linearly independent linear forms with coefficients in some algebraic number field
of degree d. Consider the inequality

|Ly(x) - - Ln(x)| < |det(Ly, ..., Ly,)|[x|™° where 0 < 6§ < 1. (1.2)
The set of solutions of (1.2) with
x € Z® |x|>max{(n)¥° H(L,),...,H(L,)}

is contained in the union of at most [(2d)226"‘5_2] proper linear subspaces of R™.
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A second result in this direction is due to Vojta [93]. Essentially this result says
that, apart from finitely many exceptions which may depend on §, the solutions of (1.2)
are in the union of finitely many, at least in principle effectively computable, proper
linear subspaces of R" which are independent of 4.

In 1977, Schlickewei extended Schmidt’s Subspace Theorem of 1972 to the p-adic
case and to number fields. In 1990 (see [75]), he generalized Schmidt’s quantitative
Subspace Theorem to the p-adic case over Q and later 1992 to number fields (cf. [76]).
We shall see that these results posses many important applications. Vojta proved the
p-adic assertion of the above mentioned result himself.

Evertse [40] derived in 1996 an improved version of Schlickewei’s and Schmidt’s
quantitative Subspace Theorem. Below we state this result of Evertse and to this end
we introduce suitably normalized absolute values and heights.

Let K be an algebraic number field. Denote its ring of integers by Og and its
collection of places by M. For v € Mg, x € K, we define the absolute value |z|, by
() |z|, = |o(x)|Y if v corresponds to the embedding o : K < R;
(i) |z|, = |o(2)|]*®QU = [7(z)|?/IKU if y corresponds to the pair of conjugate complex
embedding 0,7 : K — C;
(iif) |z], = (Ngp) Otde@/K:U if y corresponds to the prime ideal p of O.
Here Np = #(Ok/p) is the norm of p and ord,(x) the exponent of p in the prime
ideal composition of (z) with ord,(0) := co. In case (i) or (ii) we call v real infinite
or complex infinite, respectively; in case (iii), we call v finite. These absolute values
satisfy the Product formula

H lz|, =1 forz € K*. (1.3)

’UEMK

The height of x = (z1,...,x,) € K" with x # 0 is defined as follows: for v € Mg
put
.o\ 1/ 2K:Q)
x|, = (Z?Zl \xi|q2;[K'Q}> ifvis real infinite,

o VK
x|, = (Zz‘n:1 \:c,|1[,KQ]) ifvis complex infinite,

x|y = max(|Z1]y, - - -, |[Tnlv) ifv is finite
(note that for infinite places v, |- |, is a power of the Euclidean norm). Now define

H(x) =H(z1,. -, 20) = [ [ %]o-

v

For a linear form [(X) = a;X; + --- + a,X,, with algebraic coefficients we define
H(l) := H(a), where a = (a1,...,a,) and if a € K™ then, we put |l|, = |a|, for
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v € M. Furthermore, we define the number field K () := K(a1/a,, ..., a,/a;) for any
J with a; # 0; this is independent of the choice of j.
We are now ready to state Evertse’s result [40]. The following notation is used:
- S is a finite set of places on K of cardinality s containing all infinite places;
-{liy,- -, lnw}, v € S are linearly independent sets of linear forms in n variables with
algebraic coefficients such that

H(liy) < H, [K(lp):K|<D forveS,i=1,...,n.

We choose for every place v € Mk a continuation of | - |, to the algebraic closure of K
and denote it by |- |,, too.

Theorem 1.5. (Quantitative Subspace Theorem, Evertse) Let 0 < 6 < 1 and
consider the inequality for x € K"

1111 —'lj’ij‘j‘“ < (H | det(l, . ,zm>|v) H(x) (1.4)

v€ES i=1 veS

Then the following assertions hold:
(i) There are proper linear subspaces Ty, ..., Ty, of K™, with

t < (260"2 -67™)*log4D - loglog4D

such that every solution x € K™ of (1.4) satisfying H(x) > H belongs to Ty U ---UTy,.
(ii) There are proper linear subspaces S, ..., Sy, of K™, with

ty < (150n* - 671+ 1(2 + loglog 2H)
such that every solution x € K™ of (1.4) satisfying H(x) < H belongs to Sy U---US,,.

Very recently (unpublished yet) Evertse and Schlickewei were able to extend the
arguments in order to handle arbitrary vectors in Q" instead of just vectors in K™
for some fixed number field K. So, they derived a result which is much more general
than the classical Subspace Theorem, in fact, it is an “absolute” generalization of the
Subspace Theorem, dealing with vectors x in @n rather than in K™. The theorem is as
follows and can be found in [44].

Let E be a number field. Let S be a finite subset of Mg of cardinality s and
suppose that for each v € S we have linearly independent linear forms ly,, . .., ln, With
coefficients in Q. We suppose that for i =1,...,n and forv € S

[E(ly): E] < D,
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and moreover that
H(ly) <H, vesl i=1,...,n

Each normalized absolute value | - |, on E has a unique extension | - |, say, to E,,
the algebraic closure of the completion E,. Fix an embedding 7, of Q over E into E,.
Then, we extend | - |, from E to Q by putting

z], = |7 (2)], for z€Q.
Using this notation, we obtain

Theorem 1.6. (Absolute Subspace Theorem, Evertse and Schlickewei) Let
E,S and the linear forms liy, ...l in X = (Xy,... ,)_(n) be as above. Let 0 < 6 < 1.
Then there exist proper linear subspaces Ty, ..., T;, of Qn all defined over E, where

ty = ty(n, 5, D, 8) < (3n)2s23(+9)° 5ns—n—4150(4 D) log log(4D)

with the following property. The set of solutions x € Q" of the inequalities

HH max ‘lw( (X o (H | det(l1y, -y lnw) o ) SH(x)™"0

veES i=1 o€ Gal(Q/E X U veES
and
H(x) > max{n*"° H} (1.5)
18 contained in the union
Thu...UT,,.

Observe that Evertse’s result stated before is a special case with the restriction
that the solutions x lie in E™. Furthermore, the bound obtained in the absolute Sub-
space Theorem is better than the bound in Evertse’s quantitative Subspace Theorem.
However, Evertse has only to assume #(x) > H instead of (1.5).

1.2 S-unit equations

In this section, we will deal with the most important application of the Subspace
Theorem. Therefore, let K be an algebraically closed field of characteristic 0, n > 1 an

integer, aq, ..., o, elements of K*, and [' a finitely generated multiplicative subgroup
of K*. A solution (z1,...,z,) of the so called weighted unit equation
oxi+ o, =1inz,...,z, €l (1.6)

is called nondegenerate if

Zajxj # 0 for each non-empty subset J of {1,...,n} (1.7)

jeJ
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and degenerate otherwise. It is clear that if I" is infinite and if (1.6) has a degenerate
solution then (1.6) has infinitely many degenerate solutions. For nondegenerate solu-
tions, we have the following result which is due to Evertse, Schlickewei and Schmidt

[45].

Theorem 1.7. (Evertse, Schlickewei and Schmidt) Let K be a field of character-
istic 0, let aq,...,a, be nonzero elements of K and let T be a multiplicative subgroup
of (K*)™ of rank r. Then the equation

a1x1+...+anajn:1

has at most
exp((6n)*"(r + 1))

nondegenerate solutions (z1,...,x,) € L.

This theorem is the Main Theorem on S-unit equations over fields with characteris-
tic 0. It is a generalization of earlier results due to Evertse and Gyéry [41], Evertse [38],
and van der Poorten and Schlickewei [72] on the finiteness of the number of nondegen-

erate solutions of (1.6). For a general survey on these equations and their applications,
we refer to Evertse, Gy6ry, Stewart and Tijdeman [42].

The above theorems can be applied to the following important Diophantine equation
which will be needed later. Let U = (um)mez be a sequence of complex numbers
satisfying a recurrence relation of order ¢,

Um = ClUm—1 + ... + Cqllm—q

with ¢1,...,¢, € C, ¢4 #0. As it is well-known, we have

n
U, = Zgi(m)a{” for m € Z,
i=1

where ay, ..., a, are distinct, nonzero complex numbers and g1, ..., g, € C[T] polyno-
mials with .

H(T —qp)dB9t =T T e,

i=1

Denote by Ny (a) the number of integers m with
U = a.

The sequence U is called nondegenerate if no quotient o/ (

1 <i<j<n)isequal
to a root of unity. From the Theorem of Skolem-Mahler-Lech (cf.

[60]) it follows that
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then Ny(a) is finite for every a € C. Using this, Schlickwei [77] showed that if U is
nondegenerate, oy, . . ., o, are not roots of unity too, and a4, ..., a;, and the coefficients
of g1,..., 9, generate an algebraic number field K of degree d then for every a € K,
we have

NU(a) < d6q22228q!.

If we assume that gi, ..., g, are all constant, we obtain the following improvement
by applying Theorem 1.7 to the group generated by a4, ..., a, which has at most rank
n.

Theorem 1.8. Let U be a recurrence sequence satisfying
U = 1a]" + ...+ gpo,'  for m € Z,

where aq, . ..,a, are nonzero complexr numbers such that neither a4, ..., a, nor any
of the quotients a;/a; (1 <@ < j < n) are roots of unities and where gy,. .., g, are
nonzero complex numbers. Then for every a € C, we have

Ny(a) < exp((n +2) - (6n)™).

Very recently, Schmidt [82] obtained the following remarkable result concerning the
zero multiplicity of an arbitrary nondegenerate complex recurring sequences (i.e., with
arbitrary polynomials g1, ..., g,)-

Theorem 1.9. (W. M. Schmidt) Suppose that (Gp)nez s a nondegenerate linear
recurring sequence of complexr numbers, whose characteristic polynomial has k distinct
roots of multiplicity < a. Then the number of solutions n € Z of the equation

G, =0,

can be bounded from above by
c(k,a) — e(7ka)ska'

(This number of solutions is called the zero multiplicity of the recurrence.)

In recent work [22], [23], David and Philippon have proved a slight sharpening of
the above results. The bound in Theorem 1.7 can be improved to

exp(exp(cin)(r + 1)).
Therefore, also the bound in Theorem 1.8 can be improved to
exp(exp(cin)).

Here ¢; is an absolute constant.
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1.3 Baker’s Method

Liouville’s Theorem was also the starting point of a development of effective methods,
too. Hermite, in 1873 and Lindemann in 1882 established the transcendence of the
numbers e and 7, respectively. The Theorem of Lindemann-Weierstrass (1885) says
that (e + --- + B,e # 0 for any distinct algebraic numbers a4, ..., ®, and any
nonzero algebraic numbers 3y, ..., G,.

A new development started in 1929 when Gelfond showed the transcendence of V2,
In 1934, Gelfond and Schneider, independently of each other, proved the transcendence
of o for a, 3 algebraic, a # 0,1 and f3 irrational. Alternatively, this result says that
for any nonzero algebraic numbers o, s, (1, B2 with log o, log as linearly independent
over the rationals, we have

Bilog ay + Bz logas # 0.

In 1966, Baker proved the transcendence of e®0a/* - - - &’ for algebraic numbers oy, .. .,

Qy,, different from 0 or 1, and [, ..., 3, with either Gy # 0 or 1,04,..., 3, linearly
independent over the rationals. This follows from the following result.

Theorem 1.10. (A. Baker) Let aq,...,a, be nonzero algebraic numbers such that
their logarithms log ay, ..., log oy, are linearly independent over the field of all ratio-
nal numbers. Then 1,loga,...,logay, are linearly independent over the field of all
algebraic numbers.

The above results have p-adic analogues and also analogues in the theory of elliptic
functions.

The effective character of the above result can be expressed in form of the tran-
scendence measures. Between 1972 and 1977, Baker [4] derived the following important
estimate.

Theorem 1.11. (A. Baker) Let o, ..., a;, be nonzero algebraic numbers with degrees
at most d and (classical absolute) heights at most A, ..., A, (all > 2), respectively. Let
b1, ..., by, be rational integers of absolute values at most B (> 2). Put A = by logay +
o« + by loga,. Then either A =0 or

n n—1
log |A| > —(16nd)?" (H logAj) log (Hlog Aj> log B.

=1 =1

Later on, the constants have been improved and the log(]]log) factor has been
removed. The best bound known at present is due to Baker and Wiistholz [7] in the
classical case and due to Waldschmidt and his colleagues, in the p-adic case.
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Later, we will need the following special form of the above theorem of A. Baker
[2]. Therefore, let us start by recalling the definition of the absolute logarithmic Weil
height: for an algebraic number 3 let Ps(z) = 2* + a_12*~' + - - + a¢ € Z|z] denote
the minimal polynomial of 3. Furthermore, let 8; = 3, (s, . . ., Br denote the conjugates

of 3. Then we call
k
h(5) = 1 los (H max{1, w})
i=1

the absolute logarithmic Weil height of (.

Theorem 1.12. (A. Baker) Let o, ..., a be algebraic numbers, different from 0 or
1, K =Q(a1,...,0k) and let d be the degree of [K : Q. Fori=1,...,k set

1 |1
h; = max {h(ai), %, 8} .

Let by,...,by € Z, by >0, A=byloga; + -+ bglogay # 0 and B = max{2, |b|,...,
|bk—1|}. Then we have

B
log|A| > —C(k)d**?hy - - - hylog (C(k)d* Ry « - - hy,_1) log by, — o (1.8)
k

where
C(k) = 2% k",

A proof of this theorem with the given explicit constants can be found in the mono-
graph of Waldschmidt [95], page 309, Corollary 9.24.

Baker’s estimates from 1967 on linear forms of logarithms in algebraic numbers
caused a breakthrough in computing upper bounds for the solutions of Diophantine
equations themselves. Baker himself gave upper bounds for the solutions of the Thue
equation [3] and the super-elliptic equation [1]

where m > 2 is a fixed given positive integer and P(x) € Z[z] is a polynomial with at
least three simple roots if m = 2 and at least two simple roots if m > 3. Later, this
conditions were weakened.

Later, Baker’s sharpening made it possible to deal with Diophantine equations
which cannot be treated by the mentioned ineffective methods. E.g. Schinzel and Ti-
jdeman showed that the hyperelliptic equation with m, z, y variable and P(z) € Z[z] a
given polynomial with at least two distinct roots implies that m is bounded. Tijdeman
also showed that the Catalan equation ™ —y™ = 1 in integers m, n, z, y all > 1 implies
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that ™ is bounded by some effectively computable number [92]. The bounds obtained
in equations involving a power with both base and exponent variable are, however, so
large that it is not yet possible to solve such equations in practice.

The best bounds for linear forms known at present make it, however, possible to
solve for example the Thue equation completely. Additional algorithms are needed to
achieve this (cf. e.g. [11]).

1.4 Mason’s inequality and applications

In this section, we want to study analogues of the previous results for function fields
in one variable. Therefore, let K be an algebraically closed field with characteristic
0. Corresponding to the integers there is the polynomial ring K[z] and the object of
concern is the set of solutions in K[z]. The results in fact refer to a more general situa-
tion; actually, we shall deal with the solutions integral over K[z] in an arbitrary finite
extension L rather than to consider just those in K|z itself.

Let us begin by recalling the definitions of discrete valuations on the field K(z)
where z is transcendental over K. For { € K define the valuation v such that
for Q € K(z) we have Q(z) = (z — &)@ A(z)/B(z) where A, B are polynomials
with A(§)B(£) # 0. Furthermore, for Q = A/B with A, B € KJ[z] we put deg@ :=
deg A — deg B; thus v, := — deg is a discrete valuation on K(z). These are all discrete
valuations on K(z). Now let L be a finite extension of K(z). Such an L is called a
function field in one variable with constant field K. Each of the valuations v¢, v, can
be extended in at most [L : K(z)] =: d ways to a discrete valuation on L and in this
way one obtains all discrete valuations on L. A valuation on L is called finite if it
extends v for some § € K and infinite if it extends v.

We need the following generalization of the degree from K|z] to L. Define the height
of f € L by

H(f) == min{0,v(f)}

where the sum is taken over all discrete valuations on L; thus for f € K(z) the height
H(f) is just the number of poles of f, counted according to multiplicity. We note that
if f lies in K[z]| then H(f) = d deg f. We also want to define the height of a polynomial
with coefficients in L. In order to do this, let us denote for any finite set S of elements
of L

SES

v(S) =min{H(s)} and H(S)=— Zmin{(), v(S)}

where the sum again runs over all valuations in L. If P € L[T] and S is the set of
its coefficients, then the quantities v(P) and H(P) are defined to be v(S) and H(S)
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respectively.
Let O denote the ring of elements of L integral over K[z]. These elements have the
property that v(f) > 0 for all finite valuations on L.

Now, we are ready to formulate Mason’s inequality which may be regarded as a
form of lower bound for linear forms in logarithms of algebraic functions but we avoid

the actual use of such logarithms and the consequent discussion of units in function
fields.

Theorem 1.13. (Mason’s inequality, R. C. Mason) Suppose that v1,7v. and 73
are nonzero elements of L with v1 + vz + v3 = 0, and such that v(y1) = v(v2) = v(vs3)
for each valuation v not in the finite set V. Then either 7, /7, lies in K, in which case
H(71/72) =0, or

H(v/7) <[V +29 -2,

where |V| denotes the number of elements of V.

This theorem was generalized later on by Mason to the case of n summands [63],
i.e. to the equation
M+Y+...+7% =0 (1.9)

In 1986, his bound was improved by Brownawell and Masser [15] who proved

HOy15 -3 Y) < (n—=1)(n = 2){|V| + 29 — 2},

for every solution of (1.9) which is nondegenerate (i.e. every non-empty proper subset
of {71,...,7} is K-linearly independent), where we have used the notation as above.
This bound was independently discovered by Voloch [94] who gave a different proof.

Using Mason’s inequality, we are able to solve completely the general hyperelliptic
equation over an algebraic function field L of characteristic 0. A proof of this theorem
can be found in the monograph of Mason (cf. [64, Theorem 6]).

Theorem 1.14. (R. C. Mason) Let ay,...,a, € O. All the solutions X, Y € O of
the hyperelliptic equation

V2= (X —a)(X — ) (X — a) (1.10)

satisfy
H(X) <26H + 8g + 4(r — 1);

here H denotes the height of the polynomial on the right hand side of (1.10), g denotes
the genus of L/K and r denotes the number of infinite valuations on L.
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Let us note that this bound varies only as a linear function of the height of the hy-
perelliptic equation, in contrast with the multiple exponential bounds for the classical
case obtained by Baker [1]. This shows that the fundamental inequality due to Mason
on which the proof of this theorem is based and which is the function field analog of
Baker’s method of linear forms in logarithms is very sharp. Let us also mention that
in the same way it is possible to construct an algorithm for the effective determination
of all the solutions of a general Thue equation in the case of function fields.

Next, we will consider equation (1.6) over function fields, too. Let L be an algebraic
function field in one variable with algebraically closed constant field K of characteristic
0. Thus, L is a finite extension of K(t) where ¢ is a transcendental element of L over
K. As we have seen, the field L can be endowed with a set M of additive valuations
with value group Z for which

K={0}u{ze€ L|v(z) =0 for each v in M, }

holds. Let S be a finite subset of M;. An element z of L is called an S-unit if v(z) = 0
for all v € M;\S. The S-units form a multiplicative group which is denoted by Us.
The group Us contains K* as a subgroup and Us/K* is finitely generated. Now, the
analogue of Theorem 1.7 for the function field case holds.

Theorem 1.15. (Evertse and Gy6ry) Let L,K,S be as above. Let g be the genus
of L/K, s the cardinality of S, and n > 2 an integer. Then for every au,...,a, € L*
the set of solutions of

o1+ ... +opry =1inx,...,x, € Us (1.11)

with oq 21, ..., 0z, not all in K (1.12)
is contained in the union of at most
log(g +2) - (e(n + 1))" 1+
(n — 1)-dimensional linear subspaces of L™.

For deriving this upper bound the effective upper bound of Brownawell and Masser
[15] for the heights of solutions of (1.11) is used. For n = 2 the theorem gives the upper
bound

log(g + 2)(3e)**?
for the number of solution of (1.11). We note that in case n = 2 Evertse [39] established
an upper bound which is better and independent of g.

Theorem 1.16. (Evertse) Let L, K, S be as above. For each pair \, pu in L* the equa-
tion

AM+py=1imzx,ye U
has at most 2 - 7% solutions with Az /uy ¢ K. As above, s denotes the cardinality of S.
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Let us mention that there exists an analog of the quantitative version of the Main
Theorem on S-unit equations over fields with characteristic 0 due to Evertse, Schlick-
ewei and Schmidt in case of the rational function field K(z), too. It is due to J. Miiller
and can be found in [66].



Chapter 2

Perfect powers in linear recurring
sequences

P. Corvaja and U. Zannier [20] showed for linear recurring sequences defined by G,, =
araf + ...+ apaf (¢t > 2) with nonzero rational numbers a; and integral characteristic
roots oy > ... > oy > 0 (o, ap coprime) that the equation G, = z? (for ¢ > 2) has
only finitely many solutions (n,z) € N?. In this chapter we want to use a quantitative
version of W. M. Schmidt’s Subspace Theorem (due to J.-H. Evertse [40]) to calculate
an upper bound for the number of solutions (n,z). Combining this with an earlier
result of I. Nemes and A. Pethd [67] we establish also an upper bound for the number
of solutions (n, z, q).

This chapter is identically equal to a joint paper with R. F. Tichy which is to appear
in Acta Arith. (cf. [51]).

2.1 Introduction

Let Ay, Ay, ..., Ay and Gg, G4, ...,Gr_1 be algebraic numbers over the rationals and
let (G,) be a k-th order linear recurring sequence given by

G,=AG, 1+ ---+AG,  for n=kk+1,.... (21)
Let oy, an, ..., q; be the distinct roots of the corresponding characteristic polynomial
XF— A X A (2.2)

Then for n > 0
Gn = Pi(n)al + Py(n)ahy + - - -+ Pi(n)af,

where P;(n) is a polynomial with degree less than the multiplicity of «;; the coefficients
of P;(n) are elements of the field: Q(Go,...,Gr_1, A1, ..., Ag, 1, ..., ().

19
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The recurring sequence is called simple, if all characteristic roots are simple. (G,,)
is called nondegenerate, if no quotient o;/cv; for all 1 <14 < j <t is equal to a root of
unity and degenerate otherwise. Observe that, even if (G, ) is degenerate, there exists a
positive integer d such that, (G,imq) is nondegenerate on each of the d arithmetic pro-
gressions with 0 < r < d. Therefore, restricting to nondegenerate recurring sequences
causes no substantial loss of generality.

In the present chapter we deal with the Diophantine equation
G, = FEz?, E e€Z\{0} (2.3)
which was earlier investigated by several authors (e.g. cf. [85]).

For the Fibonacci sequence (F;,), Cohn [18] and Wyler [97], independently, proved
that F,, is a square only if n = 0,1,2 and 13. Cohn [19] and Steiner [88] solved the
equations F,, = 222 and F,, = 3z2. They also proved the corresponding results for
the Lucas sequence (L,). London and Finkelstein [61] determined all cubes in the Fi-
bonacci sequence; Lagarias and Weisser [59] gave another proof. Steiner [87] derived
some partial results for higher powers. The proofs of these results do not depend on
estimates for linear forms in logarithms. Pethé [70], [71] used the theory of linear forms
in logarithms and computer calculations to determine all the cubes and fifth powers in
the Fibonacci sequence.

For a nondegenerate recurring sequence (G,) of order 2 induced by a (rational)
integral recurrence, it has been proved, independently, by Pethé [69] and Shorey and
Stewart [83] that for the solutions z € Z,|z| > 1 and ¢ > 2 of (2.3) max(|z|,q,n) is
bounded by an effectively computable constant depending only on E and the sequence
(G,). In fact, Pethd proved that max(|z|, g, n) is bounded by an effectively computable
number depending only on the greatest prime divisor of £ and on the coefficients and
initial values of (G,,) (provided that the coefficients are coprime integers). Peth6 ex-
tended this result to the equation G, = bx? with b € S, where S is a set of integers
composed solely of a finite number of primes.

Shorey and Stewart [83] proved the above finiteness result for certain recurring
sequences of order > 2. Let (G,) be a nondegenerate linear recurring sequence given
by

Gn = Mat + Py(n)ag + - - -+ Py(n)ay, (2.4)

where \; is a nonzero constant, |a;| > |a;| for j =2,...,¢, and G, — Ao # 0. Then
assuming z, ¢ > 1 the solutions ¢ of (2.3) can be bounded by an effectively computable
constant which depends on the coefficients and initial values of the recurrence. Kiss
[58] proved that, in fact, ¢ is less than a number which is effectively computable in
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terms of the greatest prime divisor of F and the coefficients and the initial values of
the sequence (G,,).

Shorey and Stewart [84] considered recurring sequences (G),) satisfying (2.4). As-
suming that P,(n) is a nonzero constant, t = 3 and |a;| = |as| = |as| they showed, that
(2.3) has only finitely many integral solutions E,x,q and n with the greatest prime
divisor of E bounded by a given positive integer P, and |z| > 1,¢ > 2 and n > 0.

Finkelstein [46], Williams [96] and Steiner [88] proved that 1,2 and 5 are the only
Fibonacci numbers of the form z? + 1. Finkelstein [47] established a similar result for
Lucas numbers. Stewart [89] and Shorey and Stewart [84] investigated the equation

G, =2"+¢, (2.5)

where ¢ € Z and (G,,) is a simple, nondegenerate second order recurring sequence of
rational integers. Assuming |As| = 1, they showed for the integral solutions of (2.5)
that the maximum of n > 0, |z| > 1 and ¢ > 3 is less than an effectively computable
constant depending on ¢, the coefficients and the initial values of the recurrence. In
the case ¢ = 2 they obtained a similar result under additional technical conditions.
Furthermore, Shorey and Stewart [84] proved, that if @ and § are multiplicatively
independent with one root inside the unit circle, then (2.5) has only finitely many so-
lutions in integers n,z and ¢ with n > 0, |z| > 1 and ¢ > 2.

Nemes and Pethé [67], [68] studied the more general equation
G, = Ex?+T(z), (2.6)

where T'(z) is a polynomial of degree r and of height H with integral coefficients.
For fixed F € Z and T they established bounds for the integral solutions n, ¢,z with
|z|,q > 1. Let (G,,) be defined as in (2.4) and assume

lar| > |ag| > |ey|, for j=3,...,t, (2.7)

with ay # £1. Nemes and Pethdé showed that ¢ < €4 provided that n > C5 and
r < (C3q, where C1,Cy and C3 are suitable positive numbers which are effectively
computable in terms of F, H and the coefficients and initial values of the recurrence.
Nemes and Peth6 were also able to show that if ¢ is a fixed integer larger than one and
(2.6) has infinitely many integral solutions n and x, then T'(x) can be characterized in
terms of the Chebyshev polynomials. Kiss [58] and Shorey and Stewart [84] dealt with
equation (2.6) for nondegenerate linear recurring sequences (G,,) of arbitrary order,
under condition (2.7) and the additional assumptions that £ = 1 and d is the degree of
oy over Q, o and «p are multiplicatively independent and ay # +1. Then they showed
that there are only finitely many integers n,z and ¢ with n > 0, |z| > 1 and

> max ( dlog |a| d+r>
1 log(jas |/ max(1, |as]))’
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for which (2.6) holds.

Recently Corvaja and Zannier [20] considered linear recurrences defined by
Gn = matl + axaly + - - - + a0y,

where ¢t > 2,aq,as,...,a; are nonzero rational numbers, a; > ay > --- > ap > 0
are integers. They used Schmidt’s Subspace Theorem [80], [81] to show that for every
integer ¢ > 2 the equation

G, =12 (2.8)

has only finitely many solutions (n,z) € N? assuming that G, is not identically a
perfect gth power for any n in a suitable arithmetic progression.

2.2 Results

Our first main result gives a quantitative version of the above result of Corvaja and
Zannier [20].

Theorem 2.1. Let (G,,) be a linear recurring sequence defined by
Gp = ;0] + axaly + - - - + @y, (2.9)

where t > 2,aq,as,...,a; are nonzero rational numbers, a; > ay > --- > o > 0 are
integers and such that for given ¢ > 2 there isnor € {0,...,q—1} with G4, a perfect
gth power for all m € N. Then the number of solutions (n,z) € N? of the equation

G, =121

15 finite and can be bounded above by an explicitly computable number depending on
q,01,G02, ...,0¢ Oy ..., O

Remark 2.1. Corvaja and Zannier [20] showed that (2.9) is the gth power of an integer
for infinitely many n € N, if and only if there exist integers r € {0,...,¢— 1}, b>1
and

anclﬂ?+---+csﬂ?a

where ¢y, ..., cs are nonzero rational numbers and 3; > ... > [, > 0 are integers as

above, such that
G,=b""HL

In particular, at least one of the functions m — Gpgir, (r =0,...,g—1) is a gth power
in the ring of complex functions (with pointwise multiplication) of the form (2.9), or
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G, is a perfect qth power for any n in a suitable arithmetic progression.

Remark 2.2. Observe that one can effectively determine whether G4, is a perfect
gth power or not (see again [20]). A sufficient condition is that oy, o are coprime.

Remark 2.3. The example
G,=18"+2-6"+2"

shows that the condition in Theorem 2.1 that G,,44, not be a perfect gth power for
every m can not be removed. Indeed, in this example the coefficients and roots of G,
satisfy the conditions of Theorem 2.1, but

Gom = (18m + 2m)2,
so (3o, is a perfect square for all m € N.

Remark 2.4. The assumption oy > ap > --+ > ay > 0 guarantees that the recurring
sequence (G,) is nondegenerate.

Remark 2.5. We want to mention that the proof of Theorem 2.1 should also work in
the case when (G),) is a linear recurring sequence with algebraic characteristic roots
ai, ..., 0, which are multiplicatively independent and satisfy

\a1| > ‘Oéi|, Vi:2,...,t,
and with a; € Q(ay,..., o) foralli=1,...,¢.

Our second main result extends Theorem 2.1 to the situation when also ¢ is con-
sidered to be variable.

Theorem 2.2. Let (G,,) be a linear recurring sequence defined by
Gn = mal + aaly + - - - + a0,

where aq, . ..,a; (t > 3) are nonzero rational numbers, c; > ... > oy > 0 are integers
and such that (for fized ¢ > 2) there is no r € {0,...,q — 1} with Ggyr a perfect qth
power for all m € N. Then the equation

G, =21

has only finitely many integral solutions n,x > 1,q. The number of solutions can be
bounded by an explicitly computable constant C' depending only on the recurrence.
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Remark 2.6. The assumption ¢ > 3 means no loss of generality, because for t = 2 this
theorem is already well known (see [69], [83]).

Remark 2.7. Our proof of Theorem 2.2 depends on an application of the result of
Nemes and Pethd [67] which was mentioned in the introduction in detail.

Remark 2.8. By Remark 2.2 and the theorem in [67] it should also be possible to
obtain the following finiteness result: Let (G, be the nth term of a linear recurrence
sequence defined by (2.9), where ¢ > 3, ..., are multiplicatively independent al-
gebraic numbers with

|O!1|>|O£2|>|O!i|, Vi=3,...,t,

and a; € Q(ay,...,aq) for all i = 1...,¢. Assuming that for fixed ¢ > 2 there is no
r€{0,...,¢— 1} with Gpeqr a perfect gth power for all m € N, the equation

G, =21

has only finitely many integral solutions n,x > 1, 4.

2.3 Auxiliary results

We have collected some simple lemmas which are needed in our proofs.

Lemma 2.1. Let N; denote the number of formal summands of (a1+- - -+ay)?, where
ai,...,a denote formal commuting variables. Then

k+7—1
=417,

This is well known from combinatorics.

Lemma 2.2. Let d be a positive integer. Then for the complezr function f(z) = (1 +
2)Y¢ we have
"L (1/d\ 1
— <
‘f(z) > (%)< aroa=m

. |Z|n+1

k=0

for z € C, |z| < 1, where we have chosen the branch of (1+z)'/¢ which is holomorphic
on C\(—oo, —1] and which is equal to the positive d-th root of (1+2) forz € R, z > —1.

Proof. 1t is well-known that for z € C, |z| < 1 we have

=3 (1£d) -+

k=0
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Because of / L 1 ( 1
1/d =-(1=2)-...-(n—= 1
1 _d d d 21
(n+)(n+1)‘ 1-...-n <d<
we obtain
"\ (1/d > |[/1/d
‘f(z)— (92 < S ()]s
k=0 k=n+1
1 o
< i 3 let -
d(n+1) et
1
= Plkaas
d(n+1)(1 — |z|)
and therefore the proof is complete. O

Lemma 2.3. Let a,b > 0 and let x € R be the largest solution of x = a + blogx. If
b > e? then
z < 2(a+blogb).

This lemma is due to A. Pethé and B.M.M. de Weger [86].

2.4 Proof of Theorem 2.1

According to Theorem 1.9 the number of solutions of (2.8) of the form (n,0), n € N
can be estimated by
cr(t) < e™*.
Therefore we can restrict ourselves to solutions of the form (n,z) € N? with z # 0.
These solutions are denoted by (n,,) € N? with n € 3, where X is a set of positive
integers.
Let us now consider the expansion of the function f(z) = (1 + 2)'/? around the
origin
1/q _ - 1/q j .
(1+2) —Z< j )z , with [2] <1,z # —1.

§=0

We approximate G&/? by defining

R t ma+r \ 7
1 a; o
Hy = (wa})'/? - ol 1+z(/.q)- > | |
=1 \J i—2 10
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where R > 1 is an integer to be chosen later and where we have set n = mq + r with
neN re{0,...,q— 1}. We write

h .\ M
=S (2)"

where d; € Q ((a107)'/9)", e;, b are integers, b > 0, and the e;/b are nonzero distinct
rational numbers. Clearly, H,, is nondegenerate (the roots are all positive) and we have

[Q((a101)"9) : Q] <.

By Lemma 2.1 we obtain

R+t—-1
h < .
(")
On the other hand, we have
t mq+r mq+r
a;o; 2 1
<@_1p(_j <l
; aloz'lan’T g 2
where
c::max{ — |z=2,...,t},
a1
i log2(t — 1
m > M (2.10)
qlog 3t
Therefore, by Lemma 2.2 for m we get for m large enough
1
|Him — Tmgtr| = |Gw{g+r —Hy,| <
t maq+r R+1
q| . rle. m . 1 a;o;
< aq 251 o t a~amq+r Zz Cha{nq—kr <
R+1)|1- L =
Q( ) ; ala;nq—l—r
y 2 o r o mqq R+1
< o/ 00l ——=|(t=1)c|— —= <
- N R+ 1) [( ) (041> (041> ] -
| MUEFD)
< Jatf] et g - namar (2)7
a1

Thus we derive
Huy — i < ca(R) - 17 (2.11)
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<C¥2) g(R+1)
ll =0 | —
aq

where we have set

and
e(R) == |ay/?] - oy - [(t — 1)1
Now choose
R>max{1, 2080 L (2.12)
qlog &+
Then 0 < l; < 1. Put
IL+1
l:= .
2
Then for m large enough, to be more precise, for
1 R
. loga(R) (2.13)
log T
we have L™
co(R) - I = c(R) <71) M <™,
Consequently we obtain
|Hp, — Tmger| < 1™ with0 <1 < 1, (2.14)

provided that R satisfies (2.12) and m satisfies (2.10) and (2.13).

Now let S be the set of places of Q consisting of co and all primes dividing some
of the e; or b. Extend each place in S to K :=Q ((ala’{)l/q) in some way, the infinite
place being extended such that it coincides with the complex absolute value in the given
embedding of K in C. Define the linear forms L;, forv € S and i =1,..., h as follows:
Ly :=L:=Xo— Z?Zl diXi, Li oo := X; for i =1,..., h, while for v € S, v # oo, put
Liy:=X;fori=1,...,h. Then {Lg,,...,Ly,}, v € S are linearly independent sets
of linear forms in h + 1 variables with coefficients in K. Furthermore we have

N ’H(l,—dl,...,—dh)::ﬁ fori=0,v = o0
71L(L””)_{’M(o,...,0,1,0,...,0)=1 else.

We set H := max{1, H} then it follows H(L;p) < H,forv e S, i=0,...,h. Then
Q(Liy) = Q, for v # 00, [Q(Lo,w) : Q] < ¢ and therefore

[QLiy):Q <q YweS, i=0,...,h
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For n € ¥ define the vector x,, = (b Tygir, €7, . .., €7) € ZMHL.

From (2.14) we obtain | Lg o0 (X )| < (bl)™. Recall that S includes all primes dividing
b and that the z,., are integers. Thus by the product formula (1.3),

[T tostol= TI #osmescd< T Bh=m

veS\{oo} veS\{oo} veS\{oo}

Moreover, since S includes also the primes dividing the numbers e; the product formula

(1.3) gives h h
TTTT 1Zioa)lo = TTTT e = 1.

veS i=1 veS =1
Thus we obtain o
L;
HH‘ 1,0 Xm H|Xm|v ™
veS =0 |X | vES

Since the coordinates of the vectors x,, are integers we have |x,,|, < 1 for v €
Mg\{oo}. Further, we have
Xm0 < A™

for some real A independent of m. Indeed, we have

VAN
N
3

ZTmg+r| < [Tmgtr — Hm| + [Hp| U™ +h-C-a™ <1+ h-C-a
with
¢ = max{|d;||i=1,...,h},
a = max{‘ﬁ‘uzl,...,h},
b
and a:= (14 h-¢)(1+ a). Hence

A 1/2
[Xmloo = (\bmmmq+r\2+2\ei\2> <

i=1
1/2

< ((b@)2™ + h(ba)™™)"* < A™

with A := (h + 1)ab. It follows that

7'[(Xm) = H |Xm|'u < H |Xm|'u < |Xm|oo < A™.

vEMg vES
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Lastly we have

1 00 0
10 0

det(LO,Ua-"aLh,v) =[x 01 - 0= ]-a
*x 0 0 - 1

which yields
|det(Loy,---s Lhy)o =1 Vv €ES.

Combining our estimates we get

1111 7‘%;((:[?)‘“ < (H | det(Loo, .- - ,Lh,,,)\,,> CH (%) T

vES 1=0 vES

for all m with (2.13), provided that § < log(1/l)/log A. By Theorem 1.5 there exist
finitely many nonzero rational linear forms A;(Xo, ..., Xn), ..., Ay(Xo, ..., X}) with

g < (2001 L 5T+ 10)s 66 44 - log log 4g+
+(150(h + 1)*- 6~ H BV (9 4 loglog 2H),
such that each vector x,, is a zero of some A;.

Suppose first A; does not depend on X,. Then, if A(x,,) = 0, we have a nontrivial
relation

h
ZUZ<%) :0, UZGQ,’L:L,h
i=1

By Theorem 1.9 this can hold for at most a finite number of m. More precisely, the
number of solutions m can be estimated by

1 (h) — e(?h)sh’

since (H,;,) is nondegenerate.
Suppose that A; depends on X, and that A;(x,,) = 0. Then we have

h
i=1

Set

S ()

i=1
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then U, is a nondegenerate, simple recurring sequence and we obtain
q — .0 _
Um = Tmgtr = qu+r-
Hence
h g t
V —— € m T qa\m
_— vi — a;cf ()™,
=1 i=1
has the form

p
V= bif"
i=1

with b; € Q, 3; € Q", i =1,...,p. Therefore V,, is a nondegenerate, simple recurring
sequence, and we conclude by Lemma 2.1

N Rit-1y |
p§t+(h+q 1)§t+<( ) +a 1).
q q

Observe that by our assumptions V,,, = 0 does not hold for every m hence an 7 with
b; # 0 exists. Again by Theorem 1.9 we can bound the number of solutions of (2.15)
by

ci(p) = e,

Therefore the number of solutions of (2.8) can be estimated by

e(7t)8t 4 10g120(é ; 1)0 + q- [{(260(ﬁ+1)2 ] 577(1'14_1))8 ]

Q2

-log4q - loglog 4 + (150(h + 1)* - ~1)P+Ds+1 . (2 4 loglog 2H)} :

fem o) M],

]og%
where
- (R+t—-1\ . [(h+q-1
h = =
( R > P ( q >+t

H = max{1,H(1,—dy,...,—dp)}

s= |95,

ca(R) = a7/ - e - [(t — 1),

d < log(1/1)/log A,

and [ is as in (2.14). 0



CHAPTER 2. PERFECT POWERS IN RECURRENCES

2.5 Proof of Theorem 2.2

Assume that n,z > 1,¢ > 2 is a solution of (2.8) and write
2! =G, = aaf + B(n).

We distinguish two cases:

Case 1: B(n) = 0.

Here we get
a o \" "a [
B(n)| = ol — (= > nll— =
0 = v 1+ 302 (22)") > 1 - 5 (2
1=3 =3
since
So ()<
i—3 Qo \ Q2
Q3 "
< max{— | i =3, ,t} (t—2)-(—) <
[¢5) Qg
< telag| ™! <%> <1,
0%
where ¢ = max{|a;||7=1,...,t}, whenever

log(tc|as|™
, losliclaa|™) _
loga—g

Therefore n < n; must hold and we obtain from a;a} = z? and = > 2

_ log(asjag) _ log(cal)
logz — log2

Case 2: B(n) # 0.
In this case we first set

5= (1 logaz)
2 log o

Then we get
1 .-
|B(n)| < teaj < §a1(1 6),
if 21og(2ct
n > 70g( C) = No.

a1
a2

log

)

n

> 0,

31
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Further . B
T B0 (2.16)
SO
1— (Jar]ed™) ™" < a1 o2 < 1+ (Jar]og™) ™, (2.17)

where we have used that (Jai|af")™! < 4, if

log(2]a, |t
_ Tog(2as| )

dlog oy T

Taking logarithms and using the inequalities |log(1 + z)| < z and |log(1l — z)| < 2z
for 0 <z < 3, we derive by (2.17)
—2lay [ty ™ < —loglas| — nlogen + glogz < 2Ja| o "

Thus
| —log|ai| — nlog oy + qlogz| < 2|ay| o™ (2.18)

Put A = —log|a;| — nloga; + ¢qlogz. From (2.16) and the fact that B(n) # 0, we get
A # 0. Thus we can employ Theorem 1.12 and obtain for n > 2

IA| > exp {—C(3)h1h2 log (C(3)h1hs) elogz log g — g} , (2.19)

where C'(3) = 2783 and

hi = max{h(la|™"),e|log|a:]],1},
ho = max{h(a;),elogay,1} = elogay.

Set
C3 = C(S)hlhg log (C(S)hlhg) €.

A comparison of (2.18) and (2.19) reveals that
—czlogqlogz — g < log(2|ai| ') — ndlog ;. (2.20)
However, for n > max{n,ns},
%\al\a? < larlat = |B(n)| < 2% < a[of +[B(n)| < ctaf.

Thus, for

logct 2log(2|ai|™") } .

n > max ,
{log o log oy
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we obtain
log oy

n < qlogx < 2logayn.

Writing this as
n 2logz log x
- < ) qg<n,
q log o 2log oy

(2.20) can be reformulated as

2log(Lla, |t 4 2
o8(er|”) RECT
0log 2 0 log o 0

Thus by Lemma 2.3

2log(%]ai|™?) 4 2cs3 2c;3
2 2 —1 — =:C
( dlog2 + dlog o + 5 B\75 b

if n > max{2, ny, n3, ns} =: ns. Otherwise, we have

< log (cta?®) .
—  log2

Altogether we derive )
log (ctaf)
log 2

G} =c

qgmax{

where ¢ := max{2, nq,ny, n3, ns}. For the number of solutions n,z > 1,9 > 2 of (2.8)
we finally obtain the upper bound

c

> Cla),

q=2

and therefore the proof is finished. O



Chapter 3

Exponential-polynomial equations
and linear recurrences

Let K be an algebraic number field and let (G,,) be a linear recurring sequence defined
by G, = Mal + Py(n)aly + - - - + Py(n)af, where i, a1, ..., o are nonzero elements of
K and where P;(z) € K|z] for i = 2,...,t. Furthermore let f(z,z) € K|z, z] monic in
z. In this chapter we want to study the exponential-polynomial Diophantine equation
f(Gn,x) = 0. We want to use a quantitative version of W. M. Schmidt’s Subspace
Theorem (due to J.-H. Evertse [40]) to calculate an upper bound for the number of
solutions (n, z) under some additional assumptions.
This chapter is similar to a preprint of my paper [48].

3.1 Introduction

Let Ay, Ay, ..., Ax and Gy, G1,...,Gk_1 be algebraic numbers over the rationals and
let (G,) be a k-th order linear recurring sequence given by

G,=AG, 1+ - +AG,_, for n=kk+1,.... (3.1)
Let aq, s, ..., be the distinct roots of the corresponding characteristic polynomial
XF A X A (3.2)

Then forn >0
Gn = Pi(n)al + Py(n)ay + - - -+ Py(n)ay, (3.3)

where P;(n) is a polynomial with degree less than the multiplicity of «; the coefficients
of P;(n) are elements of the field: Q(Go,...,Gg 1, A1, ..., Ak, a1, ..., ;). We shall be
interested in linear recurring sequences (G,), where G, defined as in (3.3) for which
Pi(n) is a nonzero constant, A\; say. Thus

G, = Mal + Py(n)ay + - - -+ Pi(n)a}. (3.4)

34
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The recurring sequence is called simple, if all characteristic roots are simple. (G,,)
is called nondegenerate, if no quotient o;/a; for all 1 < i < j <t is equal to a root of
unity and degenerate otherwise. Observe that, even if (G, ) is degenerate, there exists a
positive integer d such that, (G,imq) is nondegenerate on each of the d arithmetic pro-
gressions with 0 < r < d. Therefore, restricting to nondegenerate recurring sequences
causes no substantial loss of generality.

Let f € Q[z,z] be a polynomial, which is monic in z. In the present chapter we
deal with the Diophantine equation

f(Gn,Jf) =0, (35)

which was earlier investigated by several authors in the special case f(z,z) = Fxz? —
z, E € Z\{0}, which yields the Diophantine equation

G, = Exz?, E €Z\{0}. (3.6)

A survey about this equation can be found in [51] (see also Chapter 2). We cite here
only those papers, which are of interest for us. We will repeat some results also we have
stated them already in the introduction of the previous chapter.

Let us repeat the following finiteness result due to Shorey and Stewart [83]. Let
(G,) be an integral nondegenerate linear recurring sequence given by

G, = Mol + Py(n)ay + - - -+ Pi(n)a}, (3.7)

where \; is a nonzero constant, |a;| > |a;| for j =2,...,¢, and G,, — Ao} # 0. Then
assuming z,q > 1 the solutions ¢ of (3.6) can be bounded by an effectively computable
constant which depends on E and the coefficients and initial values of the recurrence.
Kiss [58] proved that, in fact, ¢ is less than a number which is effectively computable
in terms of the greatest prime divisor of £ and the coefficients and the initial values of
the sequence (G,,).

Nemes and Pethé [67], [68] studied the more general equation
G, = Ex?+T(z), (3.8)

where T'(z) is a polynomial of degree r and of height H with integral coefficients.
For fixed F € Z and T they established bounds for the integral solutions n, ¢,z with
|z|,q > 1. Let (G},) be defined as in (3.7) and assume

o] > |ag| > |ay], for j=3,....1, (3.9)
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with ap # £1. Nemes and Peth6 showed that ¢ < C; provided that n > C5 and r < Csgq,
where C1, Cy and (3 are suitable positive numbers which are effectively computable in
terms of £, H and the coefficients and initial values of the recurrence. Kiss [58] and
Shorey and Stewart [84] dealt with equation (3.8) for nondegenerate linear recurring
sequences (G,,) of arbitrary order, under condition (3.9) and the additional assumptions
that d is the degree of a; over Q, «; and as are multiplicatively independent and
ag # £1. Then they showed that there are only finitely many integers n,x and ¢ with

n >0,|z| > 1 and
dlog |ay | )
> max ,d+r
¢ (log(\au/max(l, as)))

for which
G, =21+T(z)

holds.

Recently Corvaja and Zannier [20] considered linear recurrences defined by
G, = o] + a0y + -+ - + a0,

where t > 2,a4,a9,...,a; are nonzero rational numbers, oy > g > -+ > a > 0
are integers. They used Schmidt’s Subspace Theorem [80], [81] to show that for every
integer ¢ > 2 the equation

G, = 27 (3.10)

has only finitely many solutions (n,z) € N? assuming that G, is not identically a per-
fect gth power for any n in a suitable arithmetic progression. Tichy and the author [51]
gave a quantitative version of the above result of Corvaja and Zannier (cf. Theorem 2.1).

Tichy and the author [51] also showed by combining their result with the previously
mentioned result of Nemes and Pethé [67] that the following is true (cf. Theorem 2.2):
Let (G,) be a linear recurring sequence defined as above, such that (for fixed ¢ > 2)
there is no r € {0,...,¢q — 1} with G4, a perfect gth power for all m € N. Then the
equation

G, =21

has only finitely many integral solutions n,z > 1,q. The number of solutions can be
bounded by an explicitly computable constant C' depending only on the recurrence.

Very recently, Pethd [71] used the above result of Corvaja and Zannier to show that
there are only finitely many perfect powers in a third order linear recurring sequence
G, if we assume that the characteristic polynomial of G, is irreducible and has a
dominating root.
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3.2 Results

Our main result is the generalization of the above quantitative result to the Diophantine
equation f(Gy,x) =0, where (G,,) is defined by (3.4). This will generalize and quantify
a very resent result due to Corvaja and Zannier [21].

Theorem 3.1. Let K be an algebraic number field and let (G,) be a linear recurring
sequence defined by

Gn = )\10!711 + PQ(TL)(X? + -+ Pt(n)a?,

where t > 2, A1 is a nonzero elements of K, Pi(x) € Klx| for all i = 2,...,t and
where oy, . .., o4 are multiplicatively independent numbers with 1 # |aq| > |a;| for all
j=2,...,t. Let f(z,z) € K|z, z] be monic in x and suppose that there do not exist
nonzero algebraic (over K) numbers (3; and polynomials dj(n) € K[n] for j =1,....k
such that

f(Gn,zi;dj(n)ﬂ?) 0 (311)

for all n in an arithmetic progression. Then the number of solutions (n,z) € N x K of
the equation

f(Gr,z) =0

is finite and can be bounded by an explicitly computable number C' depending on f and
on the coefficients and the initial values of the recurrence.

Remark 3.1. Corvaja and Zannier showed in [21], under the restriction that the recur-
rence is simple, that the assumption of f(G,,z) = 0 having infinitely many solutions

implies that there exist d;, 8; € K- ,j=1,...,k, and an arithmetic progression P such

that i
f(Gn, Zdﬁf) =0, forne?P.
Jj=1

Remark 3.2. The assumption that the roots of the recurrence aq,...,a; are multi-
plicatively independent is also necessary for our proof. It would be possible to relax
this condition. In fact, we only need that certain linear recurrences, where the roots lie
in the multiplicative group generated by powers of the «;, are nondegenerate.

In fact, the proof of Theorem 3.1 does also work in the case when the roots are
different positive (rational) integers.
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Theorem 3.2. Let (G,) be a linear recurring sequence defined by
Gn = )\101? + PQ(TL)OZ? + -+ Pt(n)a?,

where t > 2, A1 is a nonzero rational numbers, P;(x) € Q[z] for all i = 2,...,t and
where a; > g > ... > ay > 0 are integers. Let f(z,x) € Q[z,z] be monic in x and
suppose that there do not exist nonzero algebraic (over Q) numbers 3; and polynomials

d;(n) € Q[n] for j =1,...,k such that

f(Gn,ildj(n)ﬂ?) =0

for all n in an arithmetic progression. Then the number of solutions (n,z) € N x Q of
the equation

f(Gp,2) =0

is finite and can be bounded by an explicitly computable number C' depending on f and
on the coefficients and the initial values of the recurrence.

Remark 3.3. Observe that one can effectively determine whether there do exist
nonzero numbers 3; € K and polynomials d;(n) € K[n] for j = 1,...,k such that
(3.11) holds for all n in an arithmetic progression or not (see [21]). This will also follow
from the proof of Theorem 3.1. The following example shows that this condition is

necessary: let
G,=18"+2-6" + 2",

and f(z,x) = 2? — 2. The coefficients and roots have the desired properties, but

Gor = (18F 4 2F)2,
so f(Gax,18% + 2F) = 0 for all ¥ € N. Another much simpler example is obtained by
taking f(z,z) =z — 2.

Remark 3.4. We want to note that the above assumption (3.11) also means (for & = 0)
that f(z,0) = 0 does not hold identically or equivalently z is not a divisor of f(z,z).
For example f(z,7) = x — z - z, which yields solutions (n,0) € N? for all n € N, is
excluded.

Remark 3.5. Let us mention that the condition on the dominant root «; is crucial.
The proof of the theorem heavily depends on that assumption.

Remark 3.6. For simplicity we have introduced the condition that f(z,z) is monic in
x. There is no problem at all, if we assume that the leading coefficient of f with respect



CHAPTER 3. EXPONENTIAL-POLYNOMIAL EQUATIONS 39

to x does not depend on z. Moreover, it is a well-known trick how to get rid of the
this assumption (with a corresponding modification of the theorem); namely we may
replace f(z,x) with the polynomial a(z)?!f(z,z/a(z)), where a(z),d is the leading
coefficient, the degree respectively of f with respect to x.

Next we want to state some conclusion concerning special cases of the above result.

Corollary 3.1. Let (G,,) be a linear recurring sequence defined by

Gn = )\101? + PQ(TL)OZS + -+ Pt(n)oz?,

where t > 2, \1 is a nonzero rational number, P;y(x) € Qx| for all i = 2,...,t and
where oy, . .., oy are multiplicatively independent rational numbers with 1 # |aq| > ||
for all j = 2,...,t. Let P(x) € Q[z] be monic and suppose that there do not exist
nonzero algebraic (over Q) numbers 3; and polynomials d;j(n) € Q[n] for j =1,...,k
such that

G, = P(édj(n)ﬁf) (3.12)

for all n in an arithmetic progression. Then the number of solutions (n,z) € N x Q of

the equation
G, = P(x)

is finite and can be bounded by an explicitly computable number C' depending on P and
on the coefficients and the initial values of the recurrence.

Remark 3.7. The above corollary is also true, if we assume P(z) € Q(z), say
P(z) = f(x)/g(x), where f(z) is a monic polynomial.

Remark 3.8. Also the classical case P(x) = x%, concerning the number of perfect
powers in the linear recurring sequence (G,,) is included. So we get a generalisation
of the results stated in [51]. Observe that from [20] it follows that condition (3.12) is
equivalent to the assumption that G, is not equal to a perfect qth power for all n in
an arithmetic progression (cf. also [98]).

Last we want to discuss some families of Diophantine equations related to the above
types of equations.

Corollary 3.2. Let (G,) be an integral linear recurring sequence with (3.4), where
t > 2, )\ is a nonzero element of K = Q(ay,...,q), Pi(x) € Klz| for alli=2,...,t
and where oy, . . ., oy are multiplicatively independent algebraic integers with 1 # |aq| >
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|l forall j =2,...,1. Furthermore, suppose that there do not erist nonzero numbers
B; € K and polynomials d;j(n) € K[n] for j =1,...,k such that

Gy = (é%(@ﬁ}‘)q (3.1

for all n in an arithmetic progression and for given q > 2. Then the number of solutions
(n,x,q) € N* with n,z,q > 1 of the equation

G, =1z

1s finite and can be bounded by an explicitly computable number C' depending only on
the coefficients and the initial values of the recurrence.

Remark 3.9. Observe that condition (3.13) can be verified effectively, because under
the other assumptions one can calculate an upper bound for ¢ first. Then condition
(3.13) must only be verified for ¢ smaller than this bound.

Corollary 3.3. Let (G,) be an integral linear recurring sequence with (3.4), where
t > 2,)\ is a nonzero rational element of K = Q(au,...,q), Pi(x) € K[z] for all
1 = 2,...,t and where oy, ...,y are multiplicatively independent algebraic integers
with 1 # |oq| > |ae| > |oy| for all j = 3,...,t. Let ap # £1 and let T(x) be a
polynomial with integer coefficients and degree r; we take r = 0 if T(x) is the zero
polynomial. Furthermore, suppose that there do not exist nonzero numbers 3; € K and
polynomials d;(n) € K[n] for j =1,...,k such that

k q k
Gu= (X sy ) +7( S am) (3.14)
j=1 j=1
for all n in an arithmetic progression and for given ¢ > 2. Then there are only finitely
many integers n,x and q¢ with n > 0,q > 1 and |z| > 1 for which
Gp=21+T(z)

holds.

3.3 Auxiliary results

We need some results from the theory of algebraic functions fields, which can be found
in the monographs of Eichler [37] and Iwasawa [54], namely the theory of Puiseux ex-
pansions.



CHAPTER 3. EXPONENTIAL-POLYNOMIAL EQUATIONS 41

Let K be an algebraic number field, which is generated over the field of rational
numbers Q. We assume that f(z,y) is an absolutely irreducible polynomial in z and
y, with coefficients in the algebraic number field K, that is f is irreducible over the
algebraic closure K of K. We denote by F' the field obtained by adjoining a root of
f(z,y) to K(z), the field of rational functions in x with coefficients in the algebraic
closure of K. Then F' is an algebraic function field over the algebraically closed field
K of characteristic 0.

Theorem 3.3. (Puiseux’s Theorem) Let F' be an algebraic functions field over an
algebraically closed field K of characteristic 0, given by f(x,y) = 0. For simplicity we
suppose f(z,y) to be monic in y. Let us denote by n = [F : K(x)] the degree of F
over K(x). Then with every element £ € K there are associated r = r(£) < n natural
number e; = e;(§) whose sum is

e1+ -t e =n;

similar numbers e;(00) are associated with the symbol & = co. These numbers have the
following meaning: Setting

ze=1x—¢& 2o =1/z, (3.15)

the irreducible equation f(z,y) = 0 satisfied by an arbitrary function y of F over K
has for solutions the r = r(§) power series

y; = Z aip( “©yZe)*,  aw; 0, i=1,2,...,7(f). (3.16)

k=v;

With a primitive e;th root of unity ( form
i = gl (w0yz)k, =0, (€ - 1; (3.17)
k
then the left side of f(x,y) = 0 is identical with
flz,y) = H(y — Yij)- (3.18)
jsi

The coefficients a;, are elements of a finite field extension K' of K, and their images
under isomorphisms of K' give permutations of the y;; in (3.18). The power series have
respective radii of convergence # 0.

Let us mention that the theory of Puiseux expansions is equivalent to the valuation
theory. The numbers e;(£), i = 1,...,7(£) are called ramifications indices related to
the place generated by z¢ = z — &, respectively zo, = 1/ in the rational function field
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K (). They have the following meaning in valuation theory: The place generated by 2
in the rational function field can be extended to r(&) places Py, ..., P, in the extension
field F'. For the valuation of the extended place we have

Up, = eiIUZ§7

foralli=1,...,r.

We also want to state an explicit form of the last theorem, which enables us to
derive estimates for the coefficients of the Puiseux expansions of an algebraic function
and which is due to Coates (cf. [17]).

We introduce the following notation first. If « is an algebraic number, then deg o,
d(a), h(a) denote respectively the degree of «, the least positive rational integer such
that §(«)a is an algebraic integer, and the maximum of the absolute values of the
conjugates of «, and we put o(a) = max{dega, (), h(a)}. Let f(z,y) be as above
and let the maximum of the absolute values of the conjugates of the coefficients of
f(z,y) be at most f, where f > 2, and let f(z,y) have degree m and n in z and y,
respectively. Put N = max{n,m, 3}.

Theorem 3.4. (Explicit Puiseux’s Theorem, Coates) Let F' be an algebraic func-
tions field over an algebraically closed field K of characteristic 0, given by f(x,y) = 0.
Let £ € K and A; (1 <i<r=r(£)) be the valuations of F extending the valuation of
K(z) defined by x — &, and let e; be the ramification index of A;. We write

Y= zwik(fﬁ — &)kl
k=0

for the Puiseuz expansion of y at A;. Then the coefficients wy, (1 <i<rk=0,1,...)

are algebraic numbers, and the number field K' obtained by adjoining & and these

coefficients to K has degree at most (N deg &)Y over K. Further, K' is generated over

Kbyéandwy 1 <i<r0<k< 2N4). Finally, there exists a positive rational
integer A such that AFlwy, (1 <i<r k=0,1,...) is an algebraic integer with

k+1

h(wix) < (A) ;

X (3.19)

where A = (fo (&))", p= (N*ndeg&)*N". _
Let Q; (1 < i < r(c0)) be the valuations of F extending the valuation of K(x)
defined by 1/x. Let e; be the ramification index of Q;, and let

1 —e; o0 1 k/ei
v=(3) 2w )



CHAPTER 3. EXPONENTIAL-POLYNOMIAL EQUATIONS 43

be the expansion of y at QQ;. Then the coefficients are algebraic numbers, and the number
field K' obtained by adjoining them to K has degree at most NV over K. Further K' is
generated over K by the wy, (1 <i<r0<k< 2N4). Finally, there exists a positive
rational integer A such that A*wy (1 < i <1k =0,1,...) is an algebraic integer
with
AN k+1
h(wi) < <K> , (3.20)

where A = f#, = (N*n)3N".

We want to remark that the proof of the last theorem yields an algorithm for the
actual determination of the coefficients of the Puiseux expansion of an algebraic func-
tion. In fact, for the proof one constructs polynomials p;(w) with coefficients in the
field obtained by adjoining the first 7 coefficients of the Puiseux expansion in question,
such that the (i + 1)st coefficient is a root of p;(w). From this sequence of polynomials
everything follows (see [17]). We want to show this construction by looking at the fol-
lowing example.

Example. We want to derive the Puiseux expansions of

g(z,y) =y* —zy +1 € Qz)[y],

at all infinite places of the functional field F' = Q(z,y) generated by g(x,y) = 0. First
of all, we have
2
Y2 = g + 7362 !

for the roots of the equation g(x,7) = 0. Thus, we have F = Q(z)(v/22 — 4). From
this we see (see e.g. [90]) that F' is a so called Kummer extension (which is a special
Galois extension). Therefore we know that there are r = 2 places Py, P, lying over the
place generated by 1/z in the rational function field and the corresponding ramification
indices eq, e5 are both equal, say e, and the common value is e = 1.

First we set

G(z,y) = 2%g(a 2 %) =2® — 2+,

where 0 is the total degree of g(z,y), so G(z,y) is a polynomial in z,y. Next we write
G(z,y) = 2°Gy(z,y) = 22 — x + y?, where G is not divisible by z, then we choose
po(w) = go(0,w). So we have py(w) = w(w — 1), which has the zeros 0,1. So the first
coefficient of each expansion is know. Next we set y = zw, y = 1+ zw respectively and
substitute it into G(z,y) and repeat the procedure. We do it only for the second case.
There we have

Gz, 1+ zw) = (1+rw)® =1 — 2w+ 2% = 2(vw® — 3w + z),
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which gives p;(w) = —3w, which yields that the next coefficient is 0. Next we consider
G(z,1+ z’w) = 2*(w + z°w* + 1),
which implies py(w) = w + 1 and therefore the coefficient 1. The next step is
G(x,1— 2> + 2°w) = 2*(w + v — 227w + 2°w?),

which gives ps(w) = w and thus again the coefficient 0. Continuing in this way we get

So we have constructed the first terms of the requested Puiseux expansions.

3.4 Proof of the Main Theorem

First of all we can assume that f(z,z) = 0 depends on z and x, otherwise the assertion
of our Theorem 3.1 would be trivially false. We can also suppose without loss of gen-
erality that f(z,z) is absolutely irreducible. Otherwise we can find a finite extension
field L of K such that f(z,x) splits into a product of absolutely irreducible factors in
L[z, z|. Then we can proceed with each of those factors as below and sum up the num-
ber of solutions to get the final result. So let us denote by F' the functions field obtained
by adjoining a root of f(z,7) = 0 to K(z), where K denotes the algebraic closure of K.

We work only in the case |a;| > 1 and consider the Puiseux expansion at z = oo of
the solution z = z(z) of f(z,z) = 0. The arguments in the case |a;| < 1 are completely
analogous and use the expansion at z = 0.

In the sequel C1, Cs, . .. will denote positive numbers depending only on f(z, ) and
on A\; and on the P;, «;.

According to Theorem 1.9 and Remark 3.2 the number of solutions of (3.5) of the
form (n,0), n € N can be estimated by

02 = 670?01
Observe that this follows from the fact that the a4, . .., o are multiplicatively indepen-

dent. Therefore also G2, G2, ... are nondegenerate recurring sequences. Consequently,
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we can restrict ourselves to solutions of the form (n,z) € N x K with x # 0. These so-
lutions are denoted by (n,z,) € Nx K with n € 3, where X is a set of positive integers.

Now by Puiseux’s Theorem 3.3 we can conclude that

fzx) =] (= — ),

Jst
where
oo 1 &
_ Z ik
Tij = az’kCJ (_) )
z
k=v;
for 7 =0,...,e; — 1,2 =1,2,...,r and where eq,...,e, are the ramification indices

of the valuations extending 1/z to the function field F. Furthermore by the Explicit
Puiseux’s Theorem 3.4 we get that all coefficients lie in a fixed finite extension field K’
of K and we have

h(ax(’*) < CH,
for j=0,...,e;,—1,i=1,2,...,r. Therefore for each solution (n,z,) of (3.5) we get

> _k
= BGn®, (3.21)
k=v
for some v, e and [ with
8| < C§*
for all £ = 1,2,..., which lie in a fixed finite extension of K. In what follows we will

only consider those n, lying in a subsequence R C 3, for which the same expansion
occurs. The final number is just the sum of all numbers obtained by all those expansions.

Let us remark that for n > C, the above series converges absolutely; this is because

1+Z )\1 <a—1)n‘ >

> CGC? — OQ,

i

<1/2 for n>C;

.7

v

Al

because C7 = |ay| > 1. Thus

o

o0 00 i
D 1Bl |Gl T <Y OFTHCCRT = Ca Y [03 [CsCP17Ye| < oo,

k=v k=v k=v
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ifn> 04.
Since |ay| > |a4| for i = 2,...,t, we have binomial expansions
k
k kE _kn ¢ P(n) a \" e
G e = Nea < |1 i ad —
n 170y ( +; A <a1)
k kn x* _E ¢ P(n) o n "
S () (R ()Y
RIEIEC

for some choice of the eth roots of A\; and a;, which we may assume to be fixed for all
n € R. Because of the fact that

o)

=2

< Cgn® O < 1,

because C1g = |ag/ay| < 1, if n > Ciy, the expansion converges again absolutely for
large n.

Next we are going to approximate x, by a finite sum extracted from the Puiseux
expansion (3.21). We define

Hym 3 e S (—Tf) (Z P;(:z) (%))

k):'u r=0 1=2

where H > 1 is an integer to be chosen later. We may write
h
H, = ZTj(n)’Y;’L, neR,
j=1

where the 7;(n) € K[n] and the ; are distinct and lie in the multiplicative group

generated by ai/ “and ay,...,o. Clearly H, is nondegenerate, in fact the roots v; are
again multiplicatively independent. Moreover, we have

h < Ciy(H), (3.22)

where C12(H) means that the constant depends also on H.

We enlarge K at once and assume that it contains all the a; /¢ and all the coeffi-
cients 3; in the Puiseux series. In particular, we may assume that K contains all the
coefficients of 7; and the ;.
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Next we estimate the approximation error we make, when we approximate x,
through H,,. We have

o = Hol = [on = 30 5007 _i(_> > A () E
Ty — p| = [Ty — ‘o ¢ ¢ - |\ — >
k=v e r—o \ T i=2 A a1
H &k _kn [es) _k t PZ(TL) a; a\ 7
< Y gaert Y (7«> (Z - (a_1> + (3.23)
k=v r=H+1 =2
0 _k _kn O [k L P(n) ()"
e e e ? _Z <
S parta; z(r)(z () \_
k=H+1 z:O 1= P
:G;—rk/e
" ' Pi(n) | HA1
< ST CEICk O (K H an) (% 3.24
_;13 1415(7)1222:/\1 o + ( )
+ ) CliCkrcecy e <
k=H-+1
H
< Yook, H) [Csn@om) ™ + (3.25)
k=v
H+1
[0130?4 (060?)_1/6}
+Cl3 n -
1= Ci3CY, (CeCT)
<1/2 f(;;n>016
S 017(H) [CS’I”LCQC{LO] HH C{lg +02() [021710220;3} i S (326)
~—
<1
< [Con® O] " (Crr(H) + Coo) = (3.27)
= Cy(H)nC»HEDopH) (3.28)
where Cig, C14 < 1, C7 > 1 thus Cs3 < 1 and therefore also Cog < 1. Observe that we
have used
>, (d
>y < )wr < O(d, H) w7+
r=H+1 r
and
o H+1
q
> ¢ <
k=H+1 q
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to estimate the tails of the above series.

For later purposes we need an estimate of |x,|. For n larger than a constant Cy; we
obtain

C [03 [060?] gl Cy%sC 3.2

< < " .29

s 1 - 03[060’?] 1/6 2829 ( )
N——

<1/2 for n>Co;

Observe that v € Z, so that we cannot conclude that Cy9 < 1 holds.

|Zn| =

S BiGnt
k=v

We choose H so that
C;é—HC’Qg < 1. (330)

To get this, we must have

1
H>max{1,L0391—1}.
log Csg

Observe that from now on H is fixed and therefore also h,7;(n),v;,¢ = 1,...,h are
fixed. Also, we choose a finite set S so that it contains all infinite absolute values of
K. Moreover we require that all the «;, A\; and all coefficients of the P;(n), all the
nonzero coefficients of f(z,z) and of 7 (n),...,7,(n) are S-units, which means that
the | - |, of those values = 1 for each v ¢ S. In particular, with this choice all y; are
S-units. Also, the G,, are S-integer, that is |G,|, < 1 for each v ¢ S, and f(z,x) is
monic in z; therefore, the z, too are S-integers, in view of the equations f(G,,z,) = 0.

We shall apply Theorem 1.5, so let us define, for every s € S, h 4+ 1 independent
linear forms in X := (Xo, ..., X}) as follows: put

Lyo(X)=Xo+ X1+ -+ X,
and for v € S;0 < ¢ < h, (i,v) # (0,00) put
Li,v(X) :Xz

Here oo denotes the infinite absolute value, which coincides with the complex absolute
value in the embedding of K in C. We have

H(Liy) < Cso
forve S,i=0,...,h. Furthermore K(L;,) = K and therefore

[K(Liy): K]=1 VYveS8,i=0,...,h
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Moreover, we have

100 ...0

110 ...0
det(LO,v,...,Lh,v) =101 ... 0]= 1’

100 1

which yields
|det(Loy,---s Lny)lw =1 VoveS.

For n € P define the vectors x, = (=2, 71(n)77, ..., Th(n)7?) € K™ and consider

the double product
H H |Lz v Xn

veS =0 |Xn|v
By putting
o=—2n +T(n)V] + ...+ Th(n)Vr = Lo,co(Xn),

we can rewrite the double product as

oo | TT toule (HHm mv) (H|xm)(h+l).

v€S\{oo} veS i=1 vES

Observe that z,, is an S-integer and that, due to our choice of S, the 7;(n)7* are S-units
for ¢ > 1. In particular, this implies

(HH Ii(n)7; n) (3.31)

veS i=1
and
vES\{oo} vgS

where we have used the product formula (1.3) and (3.29). Therefore we get using (3.28),
(3.31) and (3.32)

—(h+1)
Lz v\*n/ v o
HH | p.¢ | <O ( ) 025(H+1)02éH+1)023039 (H |Xn|v) :

vES 1=0 |Xn|” vES
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Last we need an upper bound for #(x,). We have

H(xn) < H Xp |y < O3 Hmaxﬂxn'va ()Y o - - - ‘Th(n)’ymv}a

vES vES

where we have used again our choice of S and the fact the two norms on K"*! are
equivalent. Observe that Cs; does only depend on A and on [K : Q. We need an
estimate for |z,|, and we derive it from the equation f(G,,z,) = 0. Observe that we
trivially have an estimate

‘Gn‘v S 03277,0330;4.

On the other hand, we can estimate the absolute value of the roots of an equation in
terms of the absolute value of the coefficients. We finally obtain

|$n |1, S 035710360:?7.

Moreover we have
Ti(n)7} |y < C3sn®Cly,

forall  =1,..., h. Consequently we get
H(x,) < Cyun“?Cl. (3.33)

Let us point out that these constants depend not on n.

We now choose 0 < § < 1 so that
C;é+1029023 < 1. (334)

This will be possible for small § in view of (3.30).
In view of the bound for the double product we derived and (3.33), the verification
of (1.4) of the Quantitative Subspace Theorem 1.5 will follow from

Cor (H)Cagn®F+1) (CoC9)" < (Cin®2Cy) ™~

which is the same as
n —1
p@2sHANTC (OHHLCoa00)" < (Cor(H)CosCl) .
However, this latter inequality follows from (3.34) for n > Cjs.

Therefore, by the Quantitative Subspace Theorem 1.5, there exist finitely many
nonzero linear forms A;(X), ..., A,(X) with coefficients in K and with

g S 0457
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such that each vector x,, is a zero of some A;.

Suppose first A; does not depend on Xj. Then, if Aj(x,) = 0, we have a nontrivial
relation

h
Zuiﬂ'(n)%" =0, w,€K,i=1,...,h.
i=1

By Theorem 1.9 this can hold for at most a finite number of n. More precisely, we can
conclude that the number of those solutions can be bounded by a constant Cjg, since
the ; are nondegenerate.

Suppose that A; depends on Xj and that A;(x,) = 0. Then we have
h —_
Ty = va(n)%’, v, eK,i=1,... h. (3.35)
i=1

Substituting this into f(z,z) = 0 we get

f(Gn,iz:Um(n)%n> = 0. (3.36)

If the above equation does not hold identically and we have assumed that this is not
the case, we can conclude that

|{n|n satisfies (3.36)}| < C4z

also in this case, because the left hand side of (3.36) defines a nondegenerate linear
recurring sequence and the conclusion follows again by Theorem 1.9. Observe that from
the assumption that the aq,...,a; are multiplicatively independent, we conclude the
nondegeneracy.

Then the number of solutions of (3.5) can be bounded by

r e—1

Co+ Z Z [Cy5(Cug + Cu7) + max{Cy, Ci1, Cig, Cor, Cis}] ,

i=1 j=0

where the constants in the sum clearly can depend on ¢, 7. This completes the proof. [

3.5 Proof of Theorem 3.2 and the corollaries

PROOF OF THEOREM 3.2.
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The proof is the same as the proof of Theorem 3.1, except that we can conclude
the degeneracy of H,, and the recurring sequence defined by the left hand side of (3.36)

by the fact that the roots ay,...,a; of G, are different positive integers. Therefore
possibly the order of the recurrence becomes smaller, but it cannot happen that we get
roots which differ by a root of unity different from 1. O

PrROOF OF COROLLARY 3.2.

This follows readily from Theorem 3.1 in form of Corollary 3.1 and a result, men-
tioned in the introduction, which is due to Shorey and Stewart [84, Theorem 3].
Let us remark that by Eisenstein’s criterion for absolutely irreducibility the polyno-
mials f(z,2) = z9 — z are absolutely irreducible for all q. Moreover, observe that
G, — Ao} # 0, because of our assumption ¢ > 2. O

PRrROOF OF COROLLARY 3.3.

Let d be the degree of o over Q. Using a result of Shorey and Stewart [84, Corollary
1], also mentioned in the introduction, we can conclude that the number of solutions
n,z and ¢ with n > 0, |z| > 1, and

> ma ( dlog|a1| d—i—r)
X )
e log(Jas |/ max(1, |as]))

of the equation

Gp=2"+T(z)
is finite. It remains to show that the number of solutions n, z and g with n > 0, |z| > 1
and dlog |on,
og |ay
1 < ¢ < max ,d+ 7')
<log(|a1|/ma><(1, |a2))

is also finite. But this follows now from our Theorem 3.1. Observe that only for the
solutions with small ¢, an upper bound for the number of solutions can be given. [

3.6 Example

In this section we consider the very special equation
My =2>+1, n#0,z€7Z, (3.37)
and we calculate an upper bound for the number of solutions. We have
f(z,x)=2>—22+1 and G,=2"

This example does not fit perfectly, because t = 1, but after all it will show the im-
portant steps used in our method. We will use the notations of the proof of Theorem 3.1.
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We have already calculated the Puiseux expansions we need. Let us repeat them:

1 1 1 1
n=z-c-5-25+0(3) (338)
1 1 1 1

By the Explicit Puiseux’s Theorem 3.4 we get the following bound for the coefficients
of the above series .
A=Cy =260
Moreover we get Co =0,C5 =1,C = 1,C7 = 2.
Let us now consider the solutions (n, z,), which come from (3.38). We approximate
Tn by Hn = 2" — 27" with error CQ7(H) = 2AH+2, 025 = 0, 026 = 1/2 and H = 1, if

log A

1.
log 2 +

n>016:

Next we have to choose S = {00, 2} and we get C3y = /3, Cy1 = 2v/3, Cy3 = 0, Cs9 = 4.
Choosing 0 = 1/4 we get, if

log ((2v/3)/% - 4A3)

n > 044 = log (2 . 471/4) 3

for the number of relevant subspaces
g < (2. 421)2 log4loglog4 + (150 - 81 - 4)7(2 + loglog 2V/3) = Cys.

Last we get
16 32
Ci=e" and Cu =e*".

In the same way we handle the solutions (n, z,), which come from (3.39). Here we
approximate z, by H, = 27" and therefore choose H = 1 as before. Again we have to
choose S = {00, 2} and we get C30 = /2, Cyy = 2v/2, Cyo = 0, Cy3 = 2, provided that

2log A
log2 -

n >

We choose § = 1/2 and get for
log (4A5 v/ 2\/5)
log(8v/2)

an upper bound for the number of relevant subspaces. Because of the fact that H,, =
27" we can choose Cys = Cy7 = 0.
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At last we get the following upper bound for the number of solutions (n, z) of (3.37)

(2540 421)2 log 4loglog4 + (150 - 81 - 4)7(2 + loglog 2v/3) (e + %)+

1047

<e" ,

logA+1 log ((2\/5)1/4-41\3) 2log A log <4A5V2\/§)
log2 = log(2-47Y%) 7 log2 " log(8v/2)

+ max

where A = 2(34)3'24.

We can see from this example that we cannot expect the bound to be small. This
is also clear from the point of view, that we use quite general estimates for the zero
multiplicity of nondegenerate recurring sequences and for the coefficients of Puiseux
expansions. Let us remark, that it is easy to show that our equation (3.37) has only
the trivial solution (n,z) = (1,1).



Chapter 4

On the Diophantine equation
Gn(x) = Gn(P(2))

Let K be a field of characteristic 0 and let p, g, Go, G1, P € K[z],deg P > 1. Further let
the sequence of polynomials (G, ())5, be defined by the second order linear recurring
sequence
Gpnio(z) = p(2)Gpia(z) + q(2)Gr(z), for n > 0.

In this chapter we give conditions under which the Diophantine equation G,(z) =
Gm(P(z)) has at most exp(10'®) many solutions (n,m) € Z? n,m > 0. The proof
uses a very recent result on S-unit equations over fields of characteristic 0 due to J.-H.
Evertse, H. P. Schlickewei and W. M. Schmidt (cf. Theorem 1.7 and [45]). Under the
same conditions we present also bounds for the cardinality of the set

{(m,n) € N|m # n,3c € K\{0} such that G,(z) = ¢ G, (P(z))}.

In the last part we specialize our results to certain families of orthogonal polynomials.
This chapter is identically equal to a joint paper with A. Pethé and R. F. Tichy
which is submitted for publication in Monatsh. Math. (cf. [49]).

4.1 Introduction

Let K denote a field of characteristic 0. There is no loss of generality in assuming that
this field is algebraically closed and we will assume this for the rest of the chapter. Let
p,q,Go,G1 € K[z] and let the sequence of polynomials (G, (x))2, be defined by the
second order linear recurring sequence

Grni2(z) = p(x)Gria(z) + q(2)Gy(z), for n > 0. (4.1)
By a(z),@(z) we denote the roots of the corresponding characteristic polynomial
T? — p(a)T - q(0). (42)

95
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Let A(z) = p(z)? + 4¢(z) be the discriminant of the characteristic polynomial of the
recurring sequence (G,)5% . Then we have

RN O RV C R (I RRV/NE)
vAE), |

We will always assume that the recurring sequence is simple, which means that A(z) #
0. Then for n > 0

Gr(z) = g1(z)a(z)" + go(z)i(2)", (4.3)
where
G -Gl . Gile) = Golwa)
9@ = — = aw & ol =—"r"5m -~ U

Notice that
91,92 € K(z,/p(z)? + 4¢(z)) = K(z, VA).

In fact we have

a(z)".

Gn(z) =

Go(x) ~ Go(0)alw) 1o, Grla) ~ Gola)a)
) )
)

a(z) —a(x
(Gn(x))3, is called nondegenerate, if the quotient @(z)/«(z) is not a root of unity.

a(zr) —a(x

Many Diophantine equations involving the recurrence (G, (z)), were studied pre-
viously. For example let us consider the equation

G(z) = s(z), (4.5)

where s(z) € K[z] is given. We denote by N(s(z)) the number of integers n for which
(4.5) holds. Schlickewei [78] established an absolute bound for N(s(x)), provided that
the sequence is nondegenerate and that also o, @ are not equal to a root of unity. His
bound was substantially improved by Beukers and Schlickewei [9] who showed that

N(s(z)) < 61.

In the particular case that not all algebraic functions ¢, (x)/s(z), g2(z)/s(z), a(z), @(x)
are constants (which is always the case here), Beukers and Tijdemann (cf. Theorem 2
on p. 206 in [10]) showed that

N(s(z)) < 3.

Very recently, Schmidt [82] obtained the remarkable result that for arbitrary nonde-
generate complex recurring sequences of order ¢ one has N(a) < C(q), where a € C
and C(q) depends only (and in fact triply exponentially) on ¢ (cf. Theorem 1.9).
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Another kind of result is due to Glass, Loxton and van der Poorten [53]. They
showed that, if (G,(x))>2, is nonperiodic and nondegenerate, then there are only
finitely many pairs of integers m,n with m > n > 0 and

Gn(z) = G (2). (4.6)

In a recent paper Dujella and Tichy [35] showed for linear recurring sequences
Gni1(z) = 2Gp(2)+BGph_1(z), Go(z) =0, Gi(x) =1 of polynomials with B € Z\{0}
that there does not exist a polynomial P(z) € C[z] satisfying

Gn(z) = Gm(P(z)) (4.7)

(for all m,n > 3, m # n). Applying a general theorem of Bilu and Tichy [12], this
result was used to show that the Diophantine equation G, (z) = G,,(y) has only finitely
many solutions in integers n, m, z,y, with n # m.

It is the aim of this chapter to present suitable extensions of the results (4.5) and
(4.7).

4.2 General results
Our first main result is a generalization of (4.6) to the Diophantine equation
Gu(z) = Gm(P(2)), (4.8)

where P € K|z|,deg P > 1 is arbitrary.

Theorem 4.1. Let p,q,Gy,G1, P € Kz, degP > 1 and (G,(2))2, be defined as
above. Assume that the following conditions are satisfied: 2degp > degqg > 0 and

degG; > degGy+degp >0, or
degGy < degGy + degq — degp.

Then there are at most min{exp(18'°), C(p, q, P)} pairs of integers (n, m) with n,m > 0
with n # m such that
Gn(z) = Gn(P(z))

holds. We have
C(p,q, P) = 10% - log(2C, deg p) - (4¢)5Cr 484 . 74C1degq.

where Cy = 2(deg P + 1).
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Remark 4.1. It is clear that for m = n Theorem 4.1 cannot hold.

Remark 4.2. Let us consider the following example, which shows that all sequences
must be excluded, where deg G,,(z) = 0 for all n:

Go(x) = 1, G1($) =1
Grinl(z) = %Gnﬂ(x) + %Gn(x).

This means
2degp =degq =0 and degG, =degG; = 0.

We have
Gn(z) =1 Vn.

Clearly (4.8) is satisfied for all m,n and all polynomials P € K|z].

Remark 4.3. This example shows that also in the polynomial case the condition
2degp > degq is needed. Assume that

Go(z) =1, Gi(z) ==

Gnya(r) =

2
x x

Here we have
2degp =degq=2 and degGy=0,degG; =1.

It follows that
Gp(z) =2" Vn.

In this case the following equation holds
ng(ﬂf) = Gn($2)

for all integers n.

Remark 4.4. Let us consider the Chebyshev polynomials of the first kind, which are
defined by
T, (x) = cos(n arccos ).

It is well known that they satisfy the following second order recurring relation:
To(z) =1, Tl(:v) =z,
Ty () = 22T 41 (7) — T(x).
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In this case we have
2degp > degq and degT; =degTj+ degp = 1.
It is also well known and in fact easy to prove that
Ton(z) = T, (22° — 1)

holds for all integers n. This example shows that also the second assumption in Theo-
rem 4.1 is needed.

Actually, it is also possible to give an upper bound for the number of pairs (m,n)
with G, (z) = ¢cGp(P(x)), c € K* = K\{0} variable. This means that we can give an
upper bound for the cardinality of the set

{(m,n) € N|m # n,3c € K* such that G,(z) = cG,,(P(x))}.

(Here ¢ may vary with m,n). In fact, the second part of the upper bound in the last
theorem, which depends on the degrees of the polynomials involved, follows from this
more general theorem. The bound has the advantage that it is only exponential whereas
the absolute bound of Theorem 4.1 is double exponential.

Theorem 4.2. Let p,q,Go,G1,P € K[z], degP > 1 and (G,(2)), be defined as
above. Assume that the following conditions are satisfied: 2degp > degqg > 0 and

degGy, > degGo+degp >0, or
degGy < degGy + degq — degp.

Then the number of pairs of integers (n, m) with n,m > 0,n # m for which there exists
c € K* with
Ghu(z) = cGn(P(z))

is at most C(p,q, P). We have
C(p, ¢, P) = 10% - log(2C; deg p) - (4¢)C1 de8 e . 74C1degq,
where C1 = 2(deg P + 1).

It is also possible to replace the conditions concerning the degree by algebraic
conditions.

Theorem 4.3. Let p,q,Goy, G1, P € K[z]| and (G, (2))3, be defined as above. Assume
that

(1) deg A #0,
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(2) deg P > 2,

(3) ged(p,q) =1 and

(4) ged(2G1 — Gop, A) = 1.
Then there are at most min{exp(10'8), C'(p, q, P)} pairs of integers (n, m) withn,m > 0
such that

Gn(z) = G (P(z))
holds. We have
C’(p, q, P) = 10%® - log(C, max{2degp, deg q}) - (4¢)8C1 deeq . 7iCi degq

where C; = 2(deg P + 1).

Remark 4.5. The reason for this different kind of assumptions lie in the fact that
the infinite valuation in the rational function field K(z) leads to degree assumptions,
whereas by looking at finite valuations one gets divisibility conditions as in the above
theorem.

Remark 4.6. It is obvious that for deg P = 1 Theorem 4.3 cannot hold in full gener-
ality. For example: if G,,(z) is a polynomial in z?2 for all n we get

Gn(r) = Gu(—1)

for all n.

Remark 4.7. By looking at the proof, it is clear that Theorem 4.3 also holds, if we
assume instead of (2)

(2") There is no ¢ € K such that A(P(z)) = ¢A(z) holds.

To our knowledge this is the weakest condition under which our proof works.

It is clear that (2') holds if deg P > 2 or if P is a constant. If P(z) = z then A(P(z)) =
c¢A(z) holds with ¢ = 1. Suppose that P(z) = ax + b with a,b € K and a # 0,
(a,b) # (1,0). Denote by P*) the k-th iterate of P. Let Ay be the leading coefficient
of A(z). It is left to the reader to show that (2') does not hold if and only if a%e® = ¢,
a is a root of unity of order £ > 1 and

r k-1
b\ ,
_ 7 _ PO (.
A(z) = Ao(a: +— 1) 111 - P9,
i=1 j=0
where r, s are non-negative integers with rk + s = deg A and —a—fl, x1,...,x, are dis-

tinct elements of K.
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Again we can handle the case G, (r) = ¢G,,,(P(z)) with ¢ € K* variable under this
conditions and actually the second part of the bound of the last theorem follows from
this theorem.

Theorem 4.4. Let p,q, Gy, G1, P € K[z] and (G, (2))32, be defined as above. Assume
that the conditions (1)-(4) of Theorem 4.3 are satisfied. Then the number of pairs of
integers (n, m) with n,m > 0 for which there exists ¢ € K* with

G.(z) = ¢cGp(P(x))
is at most é(p, q, P). We have
C’(p, q,P) = 10%8 . log(Cy max{2degp,degq}) - (46)801 degq . 74Cidegq

where C; = 2(deg P + 1).

4.3 Results for families of orthogonal polynomials

We will turn now our discussion to sequences of certain orthogonal polynomials satisfy-
ing (4.1). The following results can be found in the monograph of Borwein and Erdélyi
[13, Chapter 2.3], Chihara [16, Chapter I and II] or Szeg6 [91, Chapter III]. Let (u,)22,
be a sequence of complex numbers and let £ : C[z] — C be linear functional defined
by

Llz"] = pn, n=0,1,2,....

Then L is called the moment functional determined by the formal moment sequence
(tr). The number p, is called the moment of order n. A sequence (P, (z))3, is called an
orthogonal polynomial sequence (OPS) with respect to a moment functional £ provided
that for all nonnegative integers m and n the following conditions are satisfied:

(i) degP,(z) = n,
(ii) L[Pn(x)P,(x)] = 0 for m # n,
(i) £[P2(2)] # 0.

If there exists an OPS for £, then each P,(z) is uniquely determined up to an arbitrary
nonzero factor. An OPS in which each P,(z) is monic will be referred to as a monic
OPS; it is indeed unique.

It is well known that a necessary and sufficient condition for the existence of an OPS
for a moment functional £ with moment sequence (u,) is that for the determinants
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defined by
L R
R R S|
Ay =det(pirg)ijmo = | . : . .
MHn Moy --- Hon

the following conditions hold
Ap#0, n=0,1,2,....
In this case L is called quasi-definite.

A moment functional £ is called positive-definite if L[m(x)] > 0 for every w(x) € Clz]
that is not identically zero and which satisfies 7(z) > 0 for all real z. The following
holds: L is positive-definite if and only if its moments are all real and A, > 0 for all
n > 0. Furthermore, using the Gram-Schmidt process, a corresponding OPS consisting
of real polynomials exists. Moreover, £ is positive-definite if and only if a bounded,
non-decreasing function 1 exists, whose moments

un=/ 2"dy(z), n=0,1,2,...,

—0oQ

are all finite and the set
S) ={z|Y(x+0)—(x—7J)>0foral >0}

is infinite. Further for the function v

/ z"dp(x) = p, = L[z"], n=0,1,2,...

oo

is valid. This is known as the representation theorem for positive-definite moment
functionals or as the solution to the Hamburger moment problem.

Thus, an OPS with respect to a positive-definite moment functional £ induces an
inner product defined by

(p,q) = LIp(x)q(z)], p,q € Clz],

where ¢(z) is obtained by taking the complex conjugates of the coefficients of ¢(z),
on the linear space of polynomials with complex coefficients. In particular, we have
(P, P) = L[Py(z)P,(x)] =0, m # n. Thus our definition of orthogonality for the
OPS is consistent with the usual definition of orthogonality in an inner product space.
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One of the most important characteristics of an OPS is the fact that any three
consecutive polynomials are connected by a very simply relation: Let £ be a quasi-
definite moment functional and let (P,(x))22, be the corresponding monic OPS. Then
there exist constants ¢, and A, # 0 such that

Py(z) = (x — cn)Pro1(x) = MpPu2(x), n=1,2,3,..., (4.9)

where we define P_;(z) = 0. Moreover, if £ is positive-definite, then ¢, is real and
Ant1 > 0 for n > 1 (A is arbitrary).

The converse is also true and it is referred to as Favard’s theorem: Let (c,)%, and
(An)$2, be arbitrary sequences of complex numbers and let (P,(z))32, be defined by
the recurring formula

Py(x) =(x —cp)Pp1(x) = MPy2(x), n=1,2,3,..., (4.10)
P_i(z) =0, Py(z) = 1. (4.11)

Then there is a unique moment functional £ such that
L[] =X\, L[Pyn(z)Py(z)]=0form#n, mn=0,1,2,....

L is quasi-definite and (P, (z))%°, is the corresponding monic OPS if and only if A\, # 0
for all n > 1, while L is positive-definite if and only if ¢,, is real and A\, > 0 for all n > 1.

More generally, let (P,(z))5%, be a sequence of polynomials in C[z] satisfying

Py(z) = (Apz + Bp)Py_1(z) + DpPyo(z) (n>1)
P_1(x) =0, Py(z) =g #0,

where A,, By, D,, are complex numbers with A, # 0, D, # 0 for every n > 1. It fol-
lows easily by induction on n that P, has degree n and that P, has leading coefficient
kn, = gA1--- A, for n > 0. Let k_; := 1. For n > —1 write P,(x) = knpn(ac) Thus
P, (z) is monic for n > 0. Further, P_;(z) = 0, P;(z) = 1 and the sequence (P, (z))%,
satisfies (8) with ¢, = —B,ky—1/k, = —B, /A, A1 arbitrary and A, = —D,k,_2/k, =
—D,,/An_14, for n > 2. So by Favard’s Theorem, (P,(z))%, is a monic OPS and
therefore, (P,(x))2, is an OPS for some quasi-definite moment functional £. More-

over, L is positive definite if B, /A, € R and D, /A, 1A, <0 for n > 2.

We now consider the special case that A; = e/g, By = f/g, D1 = 0 where g # 0
and A, = a, B, = b, D,, = d do not depend on n for n > 2, that is, we consider the
sequence of polynomials (P, (z))3, with P,(z) € C[z] given by

P, ii(z) = (ax + b)Py(z) + dP,_1(z), n >1, (4.12)
Po(2) = g, Pile) = ex + , (4.13)
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where a,b,d, e, f, g are complex numbers with adeg # 0. By the comments just made
this sequence is an OPS for some quasi-definite moment functional L.

In the view of Remark 4.2 it is clear that Theorem 4.1 and Theorem 4.2 cannot
hold for all OPS (P,(x))s°,, because the Chebyshev polynomials of the first kind are
orthogonal with respect to the positive-definite moment functional

Cir(z)] = / (@)1 — 22"V 2dg.

1

Using the same methods as above we will prove the following analogues of Theorems
4.1 and 4.2.

Theorem 4.5. Let a,b,d,e, f,g € C, adeg # 0 and (P,(x)), a sequence of polyno-
mials in Clz] defined by (4.12) and (4.18). Let S(x) € Clz],deg S > 1. If we assume
that e = ag, then there are at most min{exp(18'°), C'(S)} pairs of integers (n, m) with
n,m > 0 with n # m such that

holds. We have
C(S) = 10%® - log(4(deg S + 1)).

Again we can prove the following result concerning the more general equation
P,(z) = ¢P,(S(x)) with some ¢ € C* variable and again the second part of the
last theorem follows from this theorem.

Theorem 4.6. Let a,b,d,e, f,g € C, adeg # 0 and (P,(z))S2, defined by (4.12) and
(4.18). Let S(x) € C[z],deg S > 1 and e = ag. Then the number of pairs of integers
(n, m) with n # m for which there exists c € C* with

Pu(z) = ¢ Pu(S(2))
is at most C(S). We have
C(S) = 10%® - log(4(deg S + 1)).

Remark 4.8. We want to mention that Theorem 4.3 and therefore also Theorem
4.4 can be applied to this situation. The conditions (1) and (3) are trivially satisfied
in this case. Condition (4) holds, if A(z) = p(z)? + 4¢(z) = (az + b)* + 4d and
2P (z) — Py(x)p(z) = 2(ex + f) — g(azx + b) = (2¢ — ag)x + 2f — bg have no common
roots. This means that, if 2e = ag, 2f = bg does not hold or

bg —2f
T =
2e — ag
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is not a root of A(zx), then we get our assertion for all S(z) € C[z],deg S > 2.
This is satisfied for example if we consider sequences P,(z) € C[z] defined by

Poi1(z) = (ax + b)Py(z) + dPy1(z), n>1,
P () =0, Py(z) =g #0,

where a, b, d, g are complex numbers with adg # 0.

4.4 Auxiliary results

In this section we collect some important theorems which we will need in our proofs.
We need some results from the theory of algebraic function fields, which can be found
for example in the monograph of Stichtenoth [90]. We will need the following estimates
for the genus of a function field F/K (cf. [90], page 130 and 131).

Theorem 4.7. (Castelnuovo’s Inequality) Let F/K be a function field with con-
stant field K. Suppose there are given two subfields F1/K and F»/K of F/K satisfying

(1) F = F\Fy is the compositum of Fy and F,.
(2) [F : F;] =n;, and F;/K has genus g; (i =1,2).
Then the genus g of F/K is bounded by
g < migi + nogs + (n1 — 1)(ne — 1).
In the special case F} = K(z) and Fy = K(y), Castelnuovo’s Inequality yields:

Theorem 4.8. (Riemann’s Inequality) Let ¢ be a non-constant irreducible poly-
nomial in two variables with coefficients in K and suppose that F = K(z,y) with
o(z,y) = 0. Then we have the following estimate for the genus g of F/K:

g<([F:K@)]-1)-([F: K(y)]-1).

Observe that Riemann’s Inequality (and therefore also Castelnuovo’s Inequality) is
often sharp, and it cannot be improved in general.

Let K be an algebraically closed field of characteristic 0. Let K be a finite extension
of K(z) where z is transcendental over K. For £ € K define the valuation v, such that
for Q € K(z) we have Q(z) = (z — €)@ A(z)/B(z) where A, B are polynomials with
A(&)B(&) # 0. Further, for Q = A/B with A, B € K|[z] we put deg () := deg A—deg B;
thus v := — deg is a discrete valuation on K(z). Each of the valuations v¢, v, can be
extended in at most [K : K(z)] ways to a discrete valuation on K and in this way one
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obtains all discrete valuations on K. A valuation on K is called finite if it extends v
for some £ € K and infinite if it extends v,,. We choose one of the extensions of v, to
L and denote this by —ord. Thus ord is a function from K to Q having the properties

(a) ord(Q) =degQ for Q € K|z],

(b) ord(AB) = ord(A) + ord(B) for A,B € K,

() ord(A+ B) < max{ord(A),ord(B)} for A, B € K,

(d) ord(A+ B) =max{ord(A),ord(B)} for A,B € K
with ord(A) # ord(B).

4.5 Proof of Theorem 4.1

First we reduce the solvability of (4.8) to the solvability of three systems of exponential
equations in n, m. We start with a sequence of polynomials (P, (z))3, defined by (4.1).
Then, in the sequel a(z), a(z), g1(x), go(z) are always be given by (4.3).

Lemma 4.1. Let (G,(2))32, be a sequence of polynomials defined by (4.1) and let
P € Klz],deg P > 1. Then (4.8) has at most exp(18° - 3) solutions m,n € Z,m # n,
if 91(x), 92(x) # 0 and which do not satisfy any of the systems:

{ gi(z)a(z)" + ga(z)ai(z)" =0 (4.14)

91(P(z))a(P(2))™ + go(P(x))a(P(z))™ = 0
g1(z)a(z)" = g1(P(z))a(P(z))™

{ ga(x)a(z)" = go(P(x))a(P(x))™ (4.15)
go(z)a(z)" = g1(P(z))e(P(x))™

{ g1(z)a(z)” = go(P(x))a(P(z))™ (4.16)

Proof. First we define

(z,vp(2)? + 4¢9(z), v/p(P(2))? + 49(P(2))).

Clearly, K is finitely generated extension field of Q. Furthermore, let I' be the multi-
plicative subgroup of (K*)? generated by

(a(z),a(),1) and (@(P(2)) ", a(P(z)) ', a(P(z))/a(P(2))
)=

We consider now for n # m the equation G, (z) = G,,,(P(z)) and obtain

g1(@)a(z)" + ga(x)o(z)" — g1(P(2))e(P(2))™ — g2(P(z))a(P(z))™ = 0.
This yields

g(z) o g al@)"  aPe)a
g2(P(2)) a(P(x))™ ~ ga(P(z)) a(P(z))™  g2(P(2)) a(P(z))™
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Now we consider the weighted unit equation

5@ | el 6l
92(P@) ~ 6a(P) " g:(P(z))
According to Theorem 1.7, equation (4.18) has at most exp(18° - 3) solutions if no

non-trivial subsum vanishes. By observing that ¢;(x), g2(z) # 0 this means that (4.17)
has at most exp(18° - 3) solutions m, n not satisfying (4.14), (4.15) and (4.16). O

g =1in (21,29, 23) € L. (4.18)

In the next lemma we calculate the order of a(x) and @(z) respectively in the
function field K/K, where K is defined as in the previous proof. We will assume that

ord(«) > ord(a@).

If this is not satisfied we can achieve this by interchanging a(z) and @(z). Then we
have:

Lemma 4.2. Let (G,(2))2, be a sequence of polynomials defined by (4.1) and assume
that 2degp > degq > 0. Then
ord(a) = degp, (4.19)
ord(a@) = deg g — degp < degp. (4.20)

Proof. First assume ord(«) = ord(@). Then by (a), (c), (b) we have
1

degp = ord(a + @) < ord(a) = 5 degq

which is against our assumption. Therefore, ord(«) > ord(@). Now it follows from (a),
(d) that degp = ord(a + @) = ord(«). Using (a), (b) and a(x)a(z) = —q¢(x) we then
obtain

ord(@) = deg ¢ — degp < degp.

Therefore the proof is finished. O

Next we prove the following lemma.

Lemma 4.3. Let (G,(2)), be a sequence of polynomials defined by (4.1) and let
P € K[z],deg P > 1. Assume that neither a(z)/a(x), nor a(P(z))/a(P(x)) is a root
of unity. We consider the systems of equations

{ g(@)e(z)" + go(z)a(z)" = 0
a1 (P(x))a(P(z))™ + go(P(z))a(P(x))™ =0

The first equation has at most one solution in n, and the second one at most one
solution in m.
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Proof. This follows from the fact that neither a(z)/a(z), nor a(P(z))/a(P(zx)) are
roots of unity. In particular, assume that we have two solutions nq, ny. Then we obtain

i~ () = (&)

which implies that n; = ns. O

PROOF OF THEOREM 4.1.
First, it is clear that we have

ord(a — @) = degp.
Moreover, the following relations hold
ord(a(P)) = degp deg P,

ord(a(P)) = (deg g — degp) deg P,
ord(a(P) — @(P)) = degp deg P.

The important relations

91(z)(a(2)
g2(x) (@(z)

are consequences of (4.4). Observe that under the condition 2degp > degg > 0 our
sequence (G, (7)), is nondegenerate. This follows from the fact that a(x)” = a@(z)”
implies ord(a)=ord(@), which by Lemma 4.2 yields a contradiction. The same is true
for the quotient «(P(x))/a(P(x)).

) (4.21)
)) = Gi(z) — Go(z)a(z) (4.22)

I
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In order to finish our proof, we want to show that g;(x), go(z) # 0 and that (4.15)
and (4.16) have no solutions.

Case 1. deg G1 > deg Gy + degp.
In this case we have

Ol"d(Gl - Goa) = deg Gl,
ord(G; — Goar) = deg G;.

This implies

ord(G1(P) — Go(P)a(P)) = deg G; deg P,
ord(G1(P) — Go(P)a(P)) = deg G, deg P.
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Therefore we get

ord(g;) = deg G1 — degp,
ord(ge) = deg Gy — degp.

Observe that from this we can conclude that g;(z), g2(z) # 0. Now assume that m,n
is a solution of (4.15). Then we obtain by calculating the order of both sides of the
equations and by using Lemma 4.2

(deg G1 — degp) + ndegp = (deg G1 — degp) deg P + mdegpdeg P, (4.23)
(deg G; — degp) + n(deggq — degp) = (deg G; — degp) deg P + (4.24)
+m(deg g — deg p) deg P.

Subtraction yields
n(2degp — deg q) = m(2degp — degq) deg P.
By our assumption 2degp > degq we derive
n=mdeg P, (4.25)
and substituting this in (4.23) implies
(deg G — degp) = (deg G; — degp) deg P.

But this yields deg P = 1, which by (4.25) gives m = n, or deg G; = deg p, leading to
a contradiction.
In the same way we conclude that a solution m,n of (4.16) implies

(deg G; — degp) + ndegp = (deg G; — degp) deg P +
+m(degq — deg p) deg P,

(deg G — degp) + n(deg g — degp) = (deg G1 — degp) deg P +
+m deg pdeg P.

Again subtraction yields
n(2degp — degq) = m(degq — 2degp)deg P ,
and therefore we get n = —mdeg P, which contradicts deg P # 0.

Case 2. deg G < deg Gy + deg q — degp.

Here we have
ord(G — Goar) = deg Gy + deg g — degp,
ord(G — Goar) = deg Gy + deg p.



CHAPTER 4. ON THE EQUATION G, (z) = Gp(P(z)) 70

Thus

ord(g;) = deg Gy + deg g — 2 degp,
ord(gs) = deg Gy.

From this we derive g;(z), go(z) # 0. We again can conclude by Lemma 4.2 that a
solution of (4.15) would imply

(deg Go + degq — 2degp) + ndegp = (deg Gy + degq — (4.26)
—2degp) deg P + +m deg pdeg P,
deg Gy + n(deg ¢ — degp) = deg Gy deg P + m(deg g — degp) deg P. (4.27)

Subtraction yields
(n—1)(2degp — degq) = (m — 1) deg P(2degp — degq)

and therefore
(n—1)=(m—1)degP.

By (4.26) we obtain
(deg Gy + deg g — degp)(1 — deg P) = 0.

This yields deg P = 1, which again implies n = m, or deg Gy + deg ¢ — deg p = 0, which
gives deg G; < 0, in both cases a contradiction.
Again we get from (4.16)

(deg Go + degq — 2degp) + ndegp = deg Gy deg P +
+m(degq — degp) deg P,
deg Gy + n(deg ¢ — degp) = (deg G + deg g — 2degp) deg P +
+mdeg pdeg P.
Subtraction gives
(n—1)=—(m —1)degP,

which implies deg P = 0, a contradiction.
Now by Lemma 4.1 we get that (4.8) has at most
1 +exp(18°-3) < exp(18'7)

solutions n,m € Z,n,m > 0 with m # n. The second part of our upper bound will
follow from the proof of Theorem 4.2 where a different proof method is used and thus
the proof is finished. O
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4.6 Proof of Theorem 4.5
Here (P,(x))s, is an OPS and we have in the sense of (4.12) and (4.13)
p(xz) =ar+b, q(r) =d.
Again we want to apply Lemma 4.1 to show that the equation
P,(z) = P,(S(x)), (4.28)

where S(z) € C[z],deg S > 1, has only finitely many solutions m,n € Z, m # n. Let
o(2), 6(z), 61(2), ga(z) be given by (43).

As above we can assume without loss of generality that ord(a) > ord(@). By ob-
serving 2degp = 2 > 0 = degq, we get by Lemma 4.2 that

ord(a) =1 and ord(a)=—1.
This yields

ord(a — @) =1,
ord(P1 — P()a) =1.

We have to calculate ord(P; — Pya). Using that Py(z) = ¢, Pi(z) = ex + f and the
assumption that e = ag we get

(Pi(z) — Po(z)e(2)) (Pr(z) — Po(z)a(z)) =
= Py(2)” — Ry(z)Pi()p(z) — Po(z)’q() =
= (ex + f)* — glex + f)(az +b) — g*d = sz + 1

for certain s,t € C. By invoking (a), (b) we then obtain
ord(P, — Pyar) =: w < 1 —ord(P, — Pyar) = 0.

Observe that Lemma 4.3 can be sharpened in this case. Because of the fact that
deg P, = n the number of solutions of (4.14) is zero. Furthermore it is clear that
91(z), g2(x) cannot be zero in this case, because the following relations hold

Ord(gl) = 07
ord(ge) =w —1<0.

Now assume that m,n € Z, m # n is a solution of (4.15). Then we get

n =mdegS,
(w—1)—n=[(w—1)—m]degS.
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Consequently deg S = 1, and therefore m = n, a contradiction.
In the same way we get for a solution of (4.16), that

(w—1) —n=mdegs,
n=[(w—1) —m]degS.

Adding the two equations gives deg S = 1, and thus n = (w — 1) — m, a contradiction
because the left side of the equation is positive and the right side negative.

By Lemma 4.1 the theorem follows and the proof is finished as the second part of
the bound will follow from Theorem 4.6. O

4.7 Proof of Theorem 4.3

We start our proof with some useful lemmas.
Lemma 4.4. Let A, B, P € K[z|. If gcd(A, B) = 1 then ged(A(P), B(P)) = 1.

This lemma is a special case of a lemma in the monograph of Schinzel [74], page
16. It was originally proved in [73].

We will use the same notations as introduced in the proof of Theorem 4.1. There
we calculated the order which was defined as the negative value of some valuation
extending 1/z from K(z) to the function field

K = K(2)(v/A(z), VA(P(2)))

of the elements g;(x), g2(x) by using the equations (4.21) and (4.22). Here we want to
calculate the valuations v(g) and v(g,) where v extends v¢ to K for some & € K.

Lemma 4.5. Let (G,(2))32, be a sequence of polynomials defined by (4.1) and assume
that ged(2G; — Gop, A) = 1. If v is a finite valuations on K with v(A) > 0 then
v(VA) = v(gaVA) = 0.

Proof. We have equation (4.21)
g1(x)(a(z) —a(z)) = Gi(x) — Go(z)a(),
which we may rewrite in the form
2g1(2)v/A(z) = 2G1(z) — Go()p(x) + Go(2) v/A(2).
By our assumption that ged(2G; — Gop, A) = 1 we have that
v(2G1 — Gop) = 0.
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Because of the fact that
W(GoVA) = 1(Go) + %U(A) >0
we get that
V(g VA) = v(2g:VA) = min{v(2G; — Gop}, v(GoVA)) =0

which was our assumption.
The same holds for go(z) and therefore the proof is finished. O

Assumption (4) of Theorem 4.3 together with Lemma 4.4 imply

gcd(2G1 (P) — Go(P)p(P), A(P)) = 1.

291(P(2)) vV A(P(z)) =
= 2G1(P(z)) = Go(P(2))p(P(2)) + Go(P(z))v A(P())

we have again, as in the proof of the previous lemma, that for a finite valuation v on
K with v(A(P)) > 0 we have v(g1\/A(P)) = v(g21/A(P)) = 0.

PROOF OF THEOREM 4.3.

We are intended to prove that the systems of equations (4.15) and (4.16) are not
solvable.

Consider for example the equation

gi(z)a(z)" = g1(P(x))a(P ()™ (4.29)

The other equations can be handled analogously.
We have deg A(P) = deg Adeg P > deg A > 0, as deg P > 1 by assumption (2).
Hence A(P) has a zero £ such that

This implies that there is a finite valuation v on K such that
v(91(P)) = —v(A(P)).

Next we want to show that v(«a(P)) = 0. Indeed, as v(A(P)) > 0 and

(Pl = PP@) + VAPE)
2
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we have

2

By assumption (3) of Theorem 4.3 and Lemma, 4.4 we have ged(p(P), ¢(P)) = 1 which
implies min{v(p(P)), v(¢(P))} = 0. If v(p(P)) > 0 then from

v(A(P)) = v(p(P)* + 4¢(P)) > 0

it follows that then also v(g(P)) > 0 which is impossible. Therefore, v(p(P)) = 0.
Consequently we have v(a(P)) = 0. In a similar fashion it follows that v(a(P)) = 0.
Thus equation (4.29) implies

v(g1) + nv(a) = v(g:(P)),

v (a(P) _ lp(P)> > 0. (4.30)

which yields
() = v(g1(P)) = v(g1) <0,
hence (4.29) has no solution in n, if v(a) > 0 and at most one, if v(a) < 0.

Studying the second equation of (4.15) we may conclude in the same way that this
equation has no solution in n, if (@) > 0 and at most one if v(@) < 0. Thus the
system of equations (4.15) may have a solution only if v(a),v(@) < 0. Observe that
this is impossible since a(x), @(z) are integral over K[z], as they are zeros of the monic
equation T? — p(x)T — q(z) = 0 with coefficients in K[z]. The integral closure of K|[z]
in K consists of those elements f such that v(f) > 0 for every finite valuation v of K.
So in particular, v(a) > 0,v(@) > 0. Hence (4.15) has no solution.

The proof of the unsolvability of (4.16) is analogous. It is clear that g;(z), go(z) # 0
holds, because from assumption (1) we can conclude that there is a zero ( of A(x),
for which we can derive using Lemma 4.5 that v(g1) < 0 and v(g2) < 0, where v is
a finite valuation extending v, to K. Consequently they must be different from zero.
Since Lemma 4.3 is true also in this case, (because a(z)/@(x) and a(P(x))/a(P(x))
are not roots of unity), we get the assertion of Theorem 4.3 by Lemma 4.1. The second
part of the bound will follow from Theorem 4.4. O

4.8 Proof of the Theorems 4.2, 4.4 and 4.6

Again we will use all notations from above. Especially, let K/K be the algebraic func-
tion field in one variable defined by

K = K(z,/p@) + 4q(2), /p(P@))? + 4¢(P())).

Moreover, we consider

' = {a(z), 2(z), a(P(2)), a(P(2))) (x,)
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which means that I" is the subgroup of (K*,-) the multiplicative group of K generated
by a(z),a(x), a(P(z)),@(P(z)). Now we have the following lemma.

Lemma 4.6. There exists a finite subset S C My of valuations of the function field
K such that T is contained in the group of S-units Us and such that

|S| < 4degg(deg P+ 1) + 4.

Proof. Let S be the set of infinite valuations of K and Sy the set of finite valuations of
K. Note that for every v € Sy we have v(a) > 0, v(a@) > 0, v(a(P)) > 0, v(a(P)) >0
since these functions are integral over K[z]. Take S = S, U S; U Sy U S5 U Sy, where

) >0},
@) > 0},
(
a(

—{VESO\I/a
={v e Slv
={v e Solv

={v e Slv

a(P)) > 0},
P)) > 0}.

AAA/—\

Then clearly I' is a subgroup of Us. Since [K : K(z)] < 4, we have |Sy| < 4. Further,
a(z)-a(z) - a(P(x)) - a(P(x)) = q(x) - q(P(z)) =: Q(x). Therefore, S;US,US3US, =

5 .= {v € Sy : v(Q) > 0}. Each of the valuations in S5 is an extension to K
of some valuation v on K(z) corresponding to a zero £ of Q(z). The polynomial
Q(z) has at most deg @ = degg(deg P + 1) zeros, and for each of these zeros &, the
valuation v¢ can be extended in at most four ways to a valuation on K. Therefore,
|S5| < 4degq(deg P + 1). This implies Lemma 8. O

Next we want to estimate the genus of the function field K/K. This can be done
using Castelnuovo’s Inequality (Theorem 4.7).

Lemma 4.7. We denote by g the genus of the function field K/K. Then we have
g < 2max{2degp,degq}(deg P + 1) — 3.
Proof. First observe that we have
= K(x,/A(z), /AP =K(z, V/A2)) - K(z, VA(P(x))).

Let us denote F1 = K(z, /A(x) A(P(z))). Thus we have

Fi=K(z,y), ¢ilz,y)=y"—Ax) =0

and
F, = K(x’y)’ @2(xay) = y2 - A(P(CU)) = 0.
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Furthermore we denote by g; the genus of F;/K (i = 1,2). We have
nlz[FF1]§2 and ’I"LQ:[FFQ]S2
By Riemann’s Inequality (Theorem 4.8) we get the following estimates:

g < (IF K@) = 1)« ([F : K(y)] - 1) < deg A — 1,
g2 < ([Fy: K(@)] = 1)- ([F : K(y)] — 1) < deg A deg P — 1.

Since A(z) = p(z)? + 4q(z) we have deg A < max{2deg p, degq}. Now using Casteln-
uovo’s Inequality (Theorem 4.7) we get

g <2(deg A —1)+2(degAdegP —1)+1=2degA(degP +1) — 3,
and therefore our proof is finished. Il

Finally, we need the following lemma.

Lemma 4.8. Assume 2degp > degq > 0 or ged(p,q) =1 and p, q not both in K. Let
1,72 be nonzero elements of K. Then there is at most one pair of integers n, m such
that

%a(P(x))m e K* and 725(P(x))m € K* (4.31)
" o(@) . oP@)™ .

NS P@)™ € K" and VQE(P(x))m €K (4.32)
" s aP@)" .

%_(P(x))m K* and WZE(P(x))m e K*, (4.33)
respectively.

Proof. First we prove equation (4.31). Suppose there are two such pairs (ni, my),
(ng,ms). Let n = ny — ng, m = my — my. Then (71/72)(a(z)/@(z))™ € K* for
i = 1,2, hence (a(z)/a(z))” € K*. Suppose n # 0. Then «a(z)/a(z) € K*. Using
p(r) = a(z) + a(z), q¢(z) = a(z) - a(x) it follows that p(z) = cia(x), q(z) = coa(x)?
with ¢;,co € K* and so p(z)? = czq(x) with c3 € K*. But this contradicts both
2degp > degq > 0 and ged(p, ¢) = 1. It follows that n = 0, whence n; = ny and so
(n1,m1) = (ng, mo). This proves the first part of the lemma.

Now we consider equation (4.32). As above we assume that there are two such pairs.
Hence we get (a(P(z))/@(P(x)))™ € K*. This implies that either a(P(x))/@(P(x)) €
K* which is impossible by the same arguments as above or m = 0. But now, using the
other expression in (4.32) we get that also n = 0 must hold. Consequently we have
(n1,m1) = (ng, ma). So we proved the second part of our lemma.



CHAPTER 4. ON THE EQUATION G, (z) = Gp(P(z)) 77

The arguments for (4.33) are the same as for (4.32). This proves the lemma also in
the third case. 0

Assume that n, m are integers satisfying G, (z) = ¢ G (P(z)) for some ¢ € K*. It
follows that

11 + Bozo + Bz =1

where
g 0@ . aPE)
b= L hw P a ) AT T ePE) (4.34)
a0 s a(P@)
a(P(@)™ aP@) "= a(P)"

Observe that z1, x5, x3 are elements of the set Ug which exists by Lemma 4.6. This is
because of fact that [' is contained in Ug and ¢ € K*. Lemma 4.8 implies that any
given pair of elements (x;, z;) gives rise to at most one pair (n,m), especially any triple
(%1, T2, x3) induces at most one solution (n,m) of the equation in consideration.

By Theorem 1.15, either (121, f2x2, G323 all belong to K*, which by Lemma 4.8 is
possible for at most one pair (n,m), or (z1,zs,x3) lies in one of at most log(g + 2) -
(4e)***2 proper linear subspaces of K3, where s denotes the cardinality of the set of
valuations S introduced by Lemma 4.8. That is, (z1,z2,x3) satisfies one of at most
log(g + 2)(4e)***2 relations of the shape

Y1Z1 + Y2Z2 + Y323 = 0 (4.35)

with (1, 799,73) a nonzero triple in K3. Assume for the moment that y; # 0 fori = 1,2, 3
and write A;; = ”yj’l(ﬂi’yj — B3;7i). Assume for the moment also that all A;; are nonzero.
Then we have

Apzry + A3z = 1, Aoy + Agpxz =1, Ao + Aziaz = 1.
In fact it suffices to consider one of these equation for example the first one
A13£U1 -+ Azgiﬂz =1.

Lemma 4.8 implies that there is at most one pair (n,m) such that both quantities
Aq3z1 and Ay, belong to K. Theorem 1.16 implies that there are at most 2- 72 pairs
(x1,2) such that at least one of these quantities does not belong to K. It follows that
there are at most 1 + 2 - 7% pairs (n,m) for which 121 + Y229 + 1323 = 0.

Next, we handle the case that one of the A;;, where (7,5) = (1,3) or (2,3), is
zero. We assume that all v; # 0 for ¢+ = 1,2, 3. It is clear that A;; = 0 implies also
Aj; = 0. Moreover, we remark that if A;; = 0 then neither A;; = 0 nor A, = 0 where
{i,j,k} = {1,2,3} can hold. Because assume that A;; = 0 and A;; = 0. This implies
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that also Aj; = 0 which means that all the quantities Ay3,..., A3y are zero. Hence we
would get
Bs

Biz1 + Boxo + B33 = (1171 + YaZo + V37T3) <7—> =1,
3

a contradiction to equation (4.35). From this discussion it follows that A;; = 0 for
(4,7) = (1,3) or (2, 3) implies that we have

Aik.’lji + Ajkl'j = 1,

with nonzero A, Ay, and {i,7,k} = {1,2,3}. As above, Theorem 1.16 implies that
there are at most 2 - 7 pairs (z;, z;) such that at least one of these quantities does
not belong to K which can happen for at most one pair (n, m) by Lemma 4.8.

Finally, we handle the case that +; = 0 for some 7 = 1,2, 3. Observe that at most
one of the ; can be zero. Now we assume that 7; = 0. Then (4.35) becomes

Yoo + 313 = 0.

Therefore we have

Bz + (53—E 2) z3 = 1.
Y2

From here we can deduce that there are at most 1 + 2 - 7% pairs of solutions (n,m)
under the condition that f5 — (v3/72)032 # 0. If this condition is not satisfied then we
have

prer =1 and [oze+ f3z3 =0

which means that (4.34) has a vanishing subsum. The cases 75 = 0 and v3 = 0 are
totally analogous. We get in both cases that there are at most 1 + 2 - 7% pairs of
solutions (n, m), if we assume that (4.34) has no vanishing subsum.

The cases for vanishing subsums of equation (4.34) can be rewritten in the following

form:
{ gi(z)e(z)" = c go( P())a(P(z))™
g2(z)a(z)" = c g1 (P(x))(P(z))™
{ g2(@)(z)" = cg2(P(z))a(P(z))™
g1(z)a(z)" = cgi1(P(z))a(P(z))"
{ g1(z)a(x)" + go(z)a(z)" = 0
91(P(z))a(P(z))™ + g2(P(z))a(P(z))™ =0

But these three equations are up to the constant ¢ totally the same as in the proof of
Theorem 4.1, 4.3 and 4.5 . Because of the fact that we have shown the unsolvability of
the first and second of the above systems by calculating the valuation at some finite
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or infinite valuation in our function field K and the fact that for every valuation on K
we have
v(c) =0,

we get that the third system has at most one solution in (n,m), where the second and
the third systems do not have a solution at all.

Altogether we get for the number of pairs (n,m) of integers with n # m such that
there exists a ¢ € K* with G, (z) = ¢G,,(P(z)) the upper bound

1+ log(g + 2)(4e)* 2. [7+12- 7] <log(g + 2)(4e)** 7>,

Now using the estimation for the genus of our function field (Lemma 4.7) and the
estimate for the cardinality of the set S (Lemma 4.8) we get that the number of
solutions can be bounded by

C(p,q, P) = C(p, g, P) = log(2max{2 deg p, deg ¢} (deg P + 1)) -
(46) 16 deg g(deg P—|—1)—|—1878 deg g(deg P+1)—|—10.

Last observe that in Theorem 4.2 we have assumed that 2degp > degq and in
Theorem 4.6 we have
p(x) =ax+b and q(z)=d,

consequently we know that deg g = 0 and degp = 1. This proves the bounds as claimed.
O



Chapter 5

On the equation Gy (x) = Gy (P(x))
for third order linear recurring
sequences

Let K be a field of characteristic 0 and let a,b,c, Gy, G1, Gy, P € Klz],deg P > 1.
Further let the sequence of polynomials (G, (z))2, be defined by the third order linear
recurring sequence

Gni3(z) = a(2)Gria(x) + b(2)Grya(x) + c(2)Gy(z), for n > 0.
In this chapter we give conditions under which the Diophantine equation
Gn(z) = Gm(P(z))

has at most exp(10?*) many solutions (n,m) € Z? n,m > 0. The proof uses a very
recent result on S-unit equations over fields of characteristic 0 due to J.-H. Evertse, H.
P. Schlickewei and W. M. Schmidt (cf. Theorem 1.7 and [45]).

This chapter is identically equal to a manuscript which is a joint work with A.
Pethé and R. F. Tichy [50]. This paper is a continuation of the work of the authors on
this equation in the case of second order linear recurring sequences (cf. Chapter 4 and
[49]).

5.1 Introduction

Let K denote a field of characteristic 0. There is no loss of generality in assuming that
this field is algebraically closed and we will assume this for the rest of the chapter. Let
a,b,c,Gy, G1, Gy € K[z] and let the sequence of polynomials (G, (x))2 , be defined by
the third order linear recurring sequence

Grni3(x) = a(x)Grio(x) + b(x)Gpy1(z) + c(x)Gp(x), for n > 0. (5.1)

80
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By a1 (z), as(x), as(z) we denote the roots of the corresponding characteristic poly-
nomial

T3 — a(x)T? — b(z)T — ¢(x). (5.2)

Setting S =T — ta(xz) the characteristic polynomial becomes

S* = p(@)S — q(2),

where
p(z) = —a(z)® + b(z), q(z)= %a(z)?’ + %a(w)b(fv) + ¢(z).
Let
g(2)\* _ (p(2))’
vw=("5) - () -
= @)@ - aa 2b(x)* + Za(z)b(z)c(r) + 1c(ac)2 - ib(a:)?’
27 (z)e(x) 108 (z) 6 4 27
Moreover, let
u(z) = 3\/@ ++/D(z), v(z)= 3\/@ — v/ D(z)
Then we have by Cardano’s formulae
on (@) = u(z) + v(z) + %a(m), (5.3)
as(z) = —M + Z\/EM + %a(x) and (5.4)
_ur)+o(z) o pulz) —w(z) 1
az(z) = T ’L\/gf + ga(x). (5.5)

We will always assume that the sequence (G, (z))%°, is simple which means D(z) # 0.
Then, for n > 0

Gn(z) = g1(x)aq (2)" + go(z)a(2)" + g3(2) ()", (5.6)

where

01(2), 92(2), g3() € K(iV3)(x, v/ D(), u(x), v(2)).

(Gn(x))se, is called nondegenerate, if no quotient o;(z)/c,(z),1 < i < j < 3 is
equal to a root of unity and degenerate otherwise.
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Many Diophantine equations involving the recurrence (G, (z)):°, were studied pre-
viously. For example let us consider the equation

Gn(z) = s(z), (5.7)

where s(z) € K[z] is given. We denote by N(s(z)) the number of integers n for which

(5.7) holds. Schlickewei [78] established an absolute bound for N(s(z)), provided that

the sequence is nondegenerate and that also o, a3 are not equal to a root of unity.

His bound was substantially improved by Beukers and Schlickewei [9] who showed that
N(s(x)) < 61.

Very recently, Schmidt [80] obtained the remarkable result that for arbitrary nonde-

generate complex recurrence sequences of order g one has N(a) < C(g), where a € C
and C(q) depends only (and in fact triply exponentially) on ¢ (cf. Theorem 1.9).

Recently, the Pethd, Tichy and the author used new developments on S-unit equa-
tions over fields of characteristic 0 due to Evertse, Schlickewei and Schmidt (cf. Theorem
1.7 and [45]) to handle the equation G, (z) = G,,,(P(z)) for sequences (G, (z))%, of
polynomials satisfying a second order linear recurring sequence (see Chapter 4). The
result was: Let p,q,Go,G1, P € Klz], deg P > 1 and (G,(2))S2, be defined by the
second order linear recurrence

Gni2(7) = p(2)Gnia(7) + q(2)Gn(z), n>0.
Assume that the following conditions are satisfied: 2degp > degq > 0 and

degGy; > degGy+degp >0, or
degGy < degGy+ degq — degp.

Then there are at most exp(10'®) pairs of integers (n,m) with n,m > 0 with n # m
such that
Gn(x) = Gm(P(w))

holds. They showed a second result in their paper: Let A(x) = p(z)? + 4¢(x). Assume
that

1) degA #0,

2) deg P > 2,

(1)
(2)
(3) ged(p,q) =1 and
(4)

4 ng(QGI G()p, A) =1.
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Then there are at most exp(10'®) pairs of integers (n,m) with n, m > 0 such that
Gn(x) = Gm(P(x))
holds.

The motivation for this equation was the following observation which shows that
the problem is non-trivial: Consider the Chebyshev polynomials of the first kind, which
are defined by

T, (z) = cos(n arccos ).

It is well known that they satisfy the following second order recurring relation:
To(z) =1, Ti(z) ==,
Toio(x) = 22T 1(x) — Ty ().
It is also well known and in fact easy to prove that
Ton(z) = T, (22° — 1).

This example shows that at least some conditions are needed to exclude this case.

It is the aim of this chapter to present suitable extensions of the above results for
third order linear recurrences.

5.2 General results

Our first main result is a suitable analog of Theorem 1 in [49] (cf. Theorem 4.1) for
the number of solutions of

Gn(z) = Gm(P(2)) (5.8)
for third order linear recurring sequence (G (x))22,.

Theorem 5.1. Let a,b,c,Gy,G1,Go, P € Klz], degP > 1 and (Gp(x))5, be de-
fined as above. Assume that the following conditions are satisfied: 3dega > dege >
0,2dega > degb and dega + degc > 2degb. Moreover, assume

degGy > degGi+dega >0, and

1

deg Gy > degGy+ §(degc —dega).
Then there are at most exp(10%Y) pairs of integers (n,m) with n,m > 0 with n # m
such that

Gn(z) = G (P(z))

holds.
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Remark 5.1. We can also assume that
degGy < degGi+dega, and
1
deg Gy < degGy+ i(degc —dega).

instead of the conditions concerning the initial polynomials of the recurrence in the
above theorem.

The case a(z) = 0 is excluded by the conditions in Theorem 5.1. This special case
is handled in the following theorem.

Theorem 5.2. Let b,c,Gy, G1,Go, P € K[z], deg P > 1 and (G, (2))2, be defined by
Gnis3(z) = b(x)Gpi1 () + c(2)Gn(x), for n>0.
Assume that the following conditions are satisfied: 3degb > 2degc > 0 and

degGy > degGi+2degb >0, and
degG; > degGo+ 2degb — degec.

Then there are at most exp(10%*) pairs of integers (n,m) with n,m > 0 with n # m
such that
Gn(z) = Gn(P(z))

holds.

Remark 5.2. Observe that the conditions in this special case are quite similar to
those for second order linear recurring sequences proved in [49] and mentioned in the
introduction.

It is also possible to replace the conditions concerning the degree by algebraic
conditions.

Theorem 5.3. Let a,b,c,Gy,G1,Ga, P € K[z] and (Gp(x))>, be defined as above.
Assume that

(1) deg D # 0,degq # 0

(2) deg P > 2,

(3) ged(c, D) = 1,ged(p, q) = 1,

(4) ged(Ga—2aG1—2a’Go—bGy, q) = 1, ged(G5—35bG2Go—$bGI+35b°G3, D) = 1 and
(5) ged(a,27¢® — 4b3) > 1.
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Then there are at most exp(10%*) pairs of integers (n,m) with n,m > 0 such that
Gn(z) = Gp(P(7))
holds.

Remark 5.3. The reason for this different kind of assumptions lie in the fact that
the infinite valuation in the rational function field K(z) leads to degree assumptions,
whereas by looking at finite valuations one gets divisibility conditions as in the above
theorem.

In this case a(x) = 0 is included in the above theorem. Let us mention it as a
corollary.

Corollary 5.1. Let b,c, Gy, G1,Ge, P € K[z] and (G, (2))32, be defined by
Gunis(z) = b(2)Gria(2) + ¢(2)Gr(x), for n>0.
Assume that
(1) deg D # 0,degc # 0
(2) deg P > 1,
(3) ged(b,c) =1,
(4) ged(Gy — bGo,¢) =1, and ged(G3 — 5bG2Gy — 2bGT + V2GR, D) = 1,

where D(z) = (c(z)/2)? — (b(x)/3)3. Then there are at most exp(102*) pairs of integers
(n,m) with n,m > 0 such that

holds.

Again we want to remark that this condition are quite similar to those obtained in
the case of second order linear recurring sequences [49] (see Theorem 4.3).

5.3 Auxiliary results

In this section we collect some important theorems which we will need in our proofs.
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Let K be an algebraically closed field of characteristic 0, » > 1 an integer, oy, ..., a;,
elements of K* = K\{0} and T a finitely generated multiplicative subgroup of K*. A
solution (x1,...,z,) of the so called weighted unit equation

onxi+--+ox,=1inz,...,z, €T (5.9)

is called nondegenerate if

Za]-xj # 0 for each non-empty subset J of {1,...,n} (5.10)

jeT
and degenerate otherwise. It is clear that if I is infinite and if (5.9) has a degenerate
solution then (5.9) has infinitely many degenerate solutions. For the nondegenerate
solutions we have Theorem 1.7, which is due to Evertse, Schlickewei and Schmidt [45].
It is sufficient for us to state their result for finite type subgroups of C* (cf. [45] and
[43, Theorem 2| for the following version). First, we remark that I' is called a finite
type subgroup of C* = C\{0} if it has a free subgroup I'y of finite rank such that I'/T
is a torsion group; the rank of I' is then defined as the rank of I'.

Theorem 5.4. (Evertse, Schlickewei and Schmidt) Let " be a finite type subgroup
of C* of rank r and o, ...,a, € C*. Then the number of nondegenerate solutions of
the equation
a1 +...+ax, =1 in x,...,x, €T
18 at most
exp((6n)*"(r +1)).

This theorem is a special case of the Main Theorem on S-unit equations over fields
with characteristic 0. It is a generalization of earlier results due to Evertse and Gy6ry
[41], Evertse [38] and van der Poorten and Schlickewei [72] on the finiteness of the
number of nondegenerate solutions of (5.9). For a general survey on these equations
and their applications we refer to Chapter 1.2.

In the special case n = 2 a much better result is known due to Baker [5] and to
Beukers and Schlickewei (cf. [9] and [43, Theorem F]).

Theorem 5.5. (Beukers and Schlickewei) Let ' be a finite type subgroup of C* of
rank r and a,b € C*. Then the equation

ax+by=1 in z,yel

has at most
216(T—|—1)

solutions.

This result is comparable to Evertse’s upper bound 3 x 7* for the case ' = O the
ring of S-integers, where S has cardinality s (cf. [40]).
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5.4 Reduction to a system of equations

We start with a sequence of polynomials (P, (z))°, defined by (5.1). Then, in the se-

quel ay(z), ag(z), az(x), g1(x), g2(x), g3(x), u(x), v(x), D(x) are always be given by (3),
(4) and (5) (see introduction).

First we remark that in fact G,,(z) € K|z] for alln € N where K is finitely generated
over Q. We may take

K = Q(coefficients of a, b, ¢, Gy, G1, Gs).
Let us define
F = K(z+/D(z,/P(z)),u(z),u(P(x)),v(z),v(P(zx))).

Clearly, F'is a finitely generated extension field of Q. In fact F' is an algebraic function
field in one variable over the constant field K. Furthermore, we set

[ = (en(2), 2(2), as(), a1 (P(2), 0a(P(2)), s (P(2))) (-,

so I is the subgroup of the multiplicative group of F' generated by the characteristic
roots of (G, (2))%2, and (G,(P(z)))3,-

It is obvious that I' can be seen as a finitely generated subgroup of C*, because we
can embed K™ into C* by sending the transcendental elements which appear in the co-
efficients of a, b, ¢, Gy, G1, G5 and the variable z to linearly independent transcendental
elements of C. Moreover, it is clear that the rank r of I is at most 6.

First we reduce the solvability of (5.8) to the solvability of seven types of systems
of exponential equations in n, m.

We consider for n # m the equation G, (z) = G,,(P(z)) and obtain

gi(z)on (z)" + go(x) oz (2)" + g3(x)az(x)" —
—g1(P(z))ou (P ()™ — g2(P(x)) 2 (P(2))™ — g3(P(z))as(P(z))™ = 0.

This can be rewritten as

0@ L @ e gPE)  ePE)
5s(P(@)"" " gs(P(2)) " " gs(P(x))"  gs(P(@)"  gs(P(e))””
in xy,...,x5 €.

According to the theorem of Evertse, Schlickewei and Schmidt (Theorem 5.4) we con-
clude that, if g1(x), g2(), g3(x) # 0 and the following systems have only finitely many
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solutions (m,n) € Z? with n,m > 0 which can be estimated by C say, then our original
equation (5.8) has only finitely many solutions which can be bounded by

C + exp(30'° - 7).

The systems which correspond to the non-trivial vanishing subsums of the above
weighted unit equation are:

{91(w> (@) + a(2)a(w)” + go(@as(a) = gu(P)on(PE)™ (5 )

(e Yoy (Pa))+ (5.14)
0 (P@))au(P))"

g1 (z)ar ()" + go(z)a(2)" + g3(x)as(z)” =0

01 (P(x))os (P(2))™ + ga(P(2)) o P () "+ (5.15)
5 (P(x))as (P())™ = 0

5:(@)s(2)" + g5(x)0 (@)" = g:(P(2))as(P(z))" 516

03P (@) (P(@)™ 4 g0(P(@)) (P (@)™ = gu (@) ()" '

{ sta)ale s oo = o) P -
0:(P(@)s(P())™ + 9,(P(@))ay(P(@))™ = g0 () ()" '

where i, j, k are always such that {i, j, k} = {1, 2, 3}. Now we have the following lemma.

Lemma 5.1. Let g:(z), 92(2), 0s(x), 91(P(2)), 2( P(x)), g5(P(2)) # 0 and assume that
both (G ()32, and (G, (P(x)))3, are nondegenerate. Then for every choice of {i,j,k} =
{1,2,3} we have

(5.11) and (5.12) have at most 3 + exp(18° - 4),
(5.15) has at most 3721,
(5.16) and (5.17) have at most 2%*

solutions (n,m) € Z? with n,m > 0,n # m.

Proof. First observe that an equation of the type
hi(z)a(z)" + ho(z)B(z)" =0 (5.18)
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with hy, ho,a, 3 € F* and «a(x)/f(x) not equal to a root of unity has at most one
solution in n € Z. In particular, assume that we have two solutions n{,n,. Then we

obtain @ <5(x)>"1 ) (M)n
ha(z)  \a(z) a(z))

which implies that n; = ns.

Let us first look at (5.11) with some choice of {i,7,k} = {1,2,3}. The second
equation is of the above type (5.18) and therefore it has at most one solution m € N.
Now the first equation in this system becomes

bi(z)ay (z)" + ba(x)ae(z)™ + bs(z)as(x)" =1,

with ()
gi\T .
O = PPy A
which can be seen as a 3-dimensional weighted unit equation over the field F' of char-
acteristic 0 where we search for solutions in the finitely generated subgroup which is
generated by a4 (), as(x), az(x). By our assumptions we have b;(z) # 0 for i = 1,2, 3.
Moreover, each of the three non-trivial subsums vanishes for at most one n € N as this
subsums are again of the type (5.18). By using Theorem 5.4 again, we can conclude

that there are at most

3+ exp(18° - 4)

pairs of solutions (n,m). The second system (5.12) is completely analogous.

Now for the equations in (5.15) we can calculate the number of solutions by using
the bound for the zero multiplicity of nondegenerate third order linear recurring se-
quences (see introduction). Therefore the first equation has at most 61 solutions in n
and the second at most 61 solutions in m. Consequently, there are at most 61-61 = 3721
pairs (n,m) for which (5.15) holds.

Each of the equations in the system (5.16) can be seen as a 2-dimensional weighted
unit equations where we are interested in solutions which lie in the group generated by
the three characteristic roots which are involved in the equation. Therefore by Theorem
5.5 we can conclude that the first and the second equation has at most 2'6* solutions.
Altogether the systems has at most 2!54 solutions as claimed in the lemma. O

Lemma 5.2. Let g1(2), 92(2), 65(2), 61(P(2)), 92(P(2)), g5(P(x)) # 0 and assume tha
both (Gp(x))e, and (G,(P(x)))e, are nondegenerate. Then (5.12) and (5.13) have
at most

1 +exp(18”-7)
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solutions (n,m) € Z* with n,m > 0,n # m respectively, provided that none of the
following systems has a solution:

gi(x)ai(x)" = gi(P(z))ou(P(z))™

gi()aj(x)" = g;(P(z))oy(P(z))™ (5.19)
gr(@)an(2)" = gr(P(x)) k(P (z))™

gi(x)ai(x)" = gi(P(z))ou(P(z))™

g;(x)a;(x)" = gr(P(x))ow(P(x))™ (5.20)
gr(@)an(z)" = g;(P(z))oy (P(z))™

gi()au(z)" = g;(P(x))a;(P(z))™

gi(x)a;(@)" = ge(P(x))ax(P(z))™ (5.21)
gr(@)an(2)" = gi(P(z)) s (P(x))™

where i, j, k are such that {3, j, k} ={1,2,3}.

Proof. We handle only the system (5.12) since (5.13) is completely analogous. Let
{i,7,k} = {1,2,3} be fixed. The second equation in both systems can be seen as a
3-dimensional weighted unit equation

. (P
g] (.T) gk(‘r) Ty — Mx{i =1 1In T1,T2,T3 € L.

w(P@)" " wP@)” " w(P@)

According to Theorem 5.4 this equation has at most

exp(18° - 7)
solutions in I' for which no non-trivial subsum vanishes. But the vanishing subsums

- { 9;(@)aj(z)" + gr(x)ax(2)" =0
9i(P(2))ai(P(2))™ + gi(P(z)) i (P(2))™ = 0

which has at most one pair of solutions (n,m) by the proof of Lemma 5.1, and the
first and the last system in our assumptions, which are assumed to have no solutions
in (n,m) at all. Therefore we have proved the upper bound for the number of solutions
(n,m) € Z? with n,m > 0,n # m as claimed in the lemma. O

From this discussion we see that it suffices to prove that g;(x), g2(), g3(x), g1 (P(x)),
92(P(z)), g3(P(x)) # 0, that a;(z)/j(x) and o, (P(x))/c;(P(z)) is not equal to a root
of unity for 1 < ¢ < j < 3 and that the systems (5.19), (5.20) and (5.21) do not have a
solution (n,m) € Z?* with n,m > 0,n # m. We will show this for each of our theorems
separately in the following sections.
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5.5 Proof of Theorem 5.1

In the next lemma we calculate the order of a;(x), as(z) and as(z) respectively in the
function field F//K, where F' and K are defined as in the previous section. Then we
have:

Lemma 5.3. Let (G,(2))32, be a sequence of polynomials defined by (5.1) and assume
that 3dega > degc,2dega > degb and dega + degc > 2degb. Then

ord(ay) = dega, (5.22)
1
ord(ae) = ord(az) = i(degc —dega) < dega. (5.23)

Proof. First of all, observe that we have
degqg=3dega and degp=2dega.
Moreover, we have by our assumptions
deg D = 3dega + degec.
Therefore, we trivially have
ord(u) = ord(v) = dega

and the leading coefficients of the Puiseux expansions of u(x) and v(x) at the absolute
value which corresponds to ord are equal to 1/3 times the leading coefficient of a(z).
Consequently, we have ord(«;) = dega. Now it follows from (b) and from the following

equation
u(z)® —v(z)® = 24/D(2)
that .
ord(u® — v?) = 5(3 dega + degc).

But using
u(z)® —v(z)® = (u(z) — v(x)) (u(aﬁ)2 + u(z)v(z) + v(a:)Z)

and the observation that ord(u? 4+ uv +v?) = 2 deg a, which follows again from the fact
that all the summands have the same leading coefficient in their Puiseux expansion,
we get

1
ord(u —v) = i(degc — dega).
We want to remark that we have

ap(z)ag(x)as(z) = —c(x). (5.24)
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Now assume that ord(as) # ord(as). Furthermore, we may assume without loss of

generality that ord(as) > ord(as). But then we have using (d)

1
ord(az) = ord(ay — ag) = ord(u — v) = i(degc —dega)

which yields by (5.24)
ord(a3) = %(degc — dega) = ord(ay),
a contradiction. Therefore we conclude again using (5.24) that
ord(az) = ord(az) = %(deg c — dega).
This means that the proof is finished.

It is clear that
ord(a; — a3) = ord(ay — ap) = dega,

ord(ae — a3) = ord (2@\/§u

1
U) = i(degc— dega).

To finish our proof, we want to calculate the order of ¢;(x), go(x) and g3(z). From the

initial conditions

Go(z) = g1(2) + g2(x) + g3(2),
Gi(z) = g1(z)ar(2) + g2(2)2(z) + g3(z)3(z),
Ga(z) = gi()ou(2)” + g2(z)n(2)” + gs(x)as
we get
91(2)A(z) = Ga() (a3(2) — az(x)) + Gi(2) (a2(2)? — as(z)?) +
+Go(z)ox () 3() (03 fv)—az
92(2)A(z) = Go(z) (eu(z) — a3(z)) + Gi(z) (as(x)
+Go(z) o ( ) 3(x )(041(33)— 3
93(2)A(z) = Ga(z) (az(x) — a1(z)) + G1(z) (a1 (x)® — as(x )2) +
+Go(z)ox ( Jaa(z)(aa(z) —
where

Ax) = en(x)az(2)(a2(7) — a1 (2)) + on (@) as(@)(en (z) — as(z)) +

tay(z)as(z)(as(T) — az())
= —6iv/3/D(z).

(z)%,

— CE1 )2) +

a())

(5.25)
(5.26)

(5.27)
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In the proof of Lemma 5.3 we have already seen that a(r)3c(x) is the dominant
term in D(z). Consequently, we have

1
ord(A) = 5(3 dega + degc).
Therefore, we can conclude
1 1

ord(g;) = ord(G>) + i(deg c—dega) — 5(3 dega + degc) =

= deg Gy — 2dega,

1
ord(gs) = ord(g3) = deg G5 + dega — 5(3 dega + degce) =
1 1
=degGy — 3 dega — 3 degc.

Thus, we deduce that g¢1(x),g2(x),g3(x) and therefore also g,(P(z)), g2(P(x)),
g3(P(x)) are different from zero.

Next we are intended to show that o;(x)/c;() is not equal to a root of unity for
1 <1 < j < 3. First observe that

a1(z) = Cag(z) or oq(z) = Cay(x)

with ¢ a root of unity is impossible because of the different order. Namely this would
imply
ord(a;) = ord(ay) or ord(aq) = ord(as)

respectively, a contradiction. Now assume that we have

az(z) = Caz(w)

with ¢ a root of unity. Observe that the leading coefficients in the Puiseux expansion
of as(x), as(z) are conjugate complex numbers. This follows from the fact that

ord(as) = ord(asz) = ord(u — v)

and u(z) — v(x) is one of the summands in the definition of those characteristic roots.
Thus the only possibilities are ( = 1 or —1 which both lead to a contradiction since

1
ord(ag — a3) = §(degc — dega)

and ao(z) + az(z) = a(z) — aq(x) # 0.
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The proof that the sequence (G, (P(x)))2, is nondegenerate is completely analo-

n=0
gous to the above case since we are only considering the order of the elements.
It remains to show the unsolvability of (5.19), (5.20) and (5.21). Because of
ord(as) = ord(as) and ord(gs) = ord(gs)

it suffices to consider the following two cases:

g1 (2)on (2)" = g1 (P(2)) s (P(z))™

{ go() ()" = go(P () o (P ()™ (5.28)
01 (2)on (2)" = go(P(2))n (P ()™
42(2)0n(z)" = g1(P(2))on (P(z))™ (5.29)
43()0s(2)" = g3(P(z))as (Pz))™

Calculating orders we get
deg Gy — 2dega + ndega = (deg Gy — 2dega)(deg P + mdegadeg P)

d d
(degG2 - e2ga - e2gc> (1 —degP) = (mdeg P — n)

degc —dega
2

or

(deg Gy — 2dega)(1 — deg P) = (mdeg P — n)dega
(2deg Gy — dega — degc)(1 — deg P) = (mdeg P — n)(deg c — deg a)
This yields
(m—1)degP=n— 1.
Substituting this into the first equation leads to
(deg Gy — dega)(1 — deg P) =0,

which implies deg P = 1 and therefore n = m or degGs = dega and therefore
deg G1 < 0, in both cases a contradiction.

The second system leads to
1 1

deg Gy — 2dega + ndega = (deg Gy — §dega ~ 5 degc)deg P +

1
+mdeg P—(degc — dega)
2
1 1 1
deg Gy — 5 degc — 3 dega + n§(degc —dega) =
1 1 1
= (deg Gy — 3 dega — 5 degc)deg P + mdegPi(degc —dega)

1 1 1
deg Gy — §degc— 5dega+n§(degc—dega) =
= (deg Gy — 2dega) deg P + mdega deg P,



CHAPTER 5. ON G,(z) = Gn(P(z)) FOR ORDER THREE 95

which yields

1
0 < -(3dega —degc) = —mé(dega+degc) < —mdegb < 0,

N | —

a contradiction.

So the proof of Theorem 5.1 is finished. By Lemma 5.1 and Lemma 5.2 we get by
counting how often each system can appear, the following bound:

exp (30" -7) +2-3- [3+exp (18 -4)] +3721+9-2% +9- (1 +exp (18- 7))

which can be estimated by
exp(10?%).

This was the claim of Theorem 5.1. O

5.6 Proof of Theorem 5.2

First we want to mention that a(z) = 0 means that we have

p(z) =b(z), q(x)=c(r) and D(z)= Zc(az:)2 — —b.

By our assumption that 3degb > 2degc we get
1
ord(u) = ord(v) = 3 degb

and the leading coefficients of the relevant Puiseux expansions are equal to i1/3 and
—iv/3 times the square root of the leading coefficient of b(z). Therefore we can conclude

ord(u —v) = % degb and ord(u+ v) = degc — deghb.
Thus we get
ord(a;) = degc — degb,
ord(ag) = ord(az) = %deg b,
ord(a; — ap) = ord(a; — a3) = %deg b,

1

ord(ag — a3) = 5 degb

ord(a; + a2) = ord(ay + a3) = degc — degb,
1

ord(ag + a3) = 5 degb.
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Using (5.25), (5.26) and (5.27) we get from our assumptions concerning the degrees
of the initial polynomials

ord(g;) = deg Gy — 2degb,
ord(gy) = ord(g3) = deg G5 — 2degb.

Therefore we can conclude that gi(x), g2(z), g3(x), 91 (P(z)), 92(P(z)), g3(P(x)) are
nonzero. The proof that (G, (x))>, and (G, (P(z)))2, are nondegenerate is analogous
to the proof of this fact in Theorem 5.1.

As in the proof of Theorem 5.1 it suffices to prove the unsolvability of (5.28) and
(5.29). By calculating orders we get

deg Gy — 2degb + n(degc — degb) = (deg Gy — 2degb) deg P +
+mdeg P(degc — degb)
degb

degb
deg G, —2degb+n% = (deg Gy — 2degb) deg P + m deg P

This yields n = mdeg P and by substituting this into one of the equations above we
get deg P = 1 which implies n = m or deg Go = 2deg b from which we get deg G; < 0,
in both cases a contradiction. The second system (5.28) can be handled analogously.

By Lemma 5.1 and 5.2 the theorem follows and the proof is finished. U

5.7 Proof of Theorem 5.3

We start our proof with some useful lemmas.

Lemma 5.4. Let A, B, P € K[xz]. Then ged(A4, B) = 1 if and only if gcd(A(P), B(P)) =
1.

Proof. Let us assume that gcd(A(P), B(P)) = 1 and that ged(A, B) > 1. Then there
exists a common root of A(z) and B(z) which we denote by £ € K (observe that K is
algebraically closed). Now let ¢ € K be a root of the polynomial P(x) — & with coeffi-
cients in K. Thus we have A(P(¢)) = B(P({)) = 0, contradicting our assumption.

The proof of the converse can be found in [49, Lemma 4]. O

We will use the same notations as introduced in the proof of Theorem 5.1.

First of all we have because of deg D # 0 and ged(c, D) = 1 that ¢(x) # 0. Therefore,
from
a1 (z)on(z)as(z) = —c(z),



CHAPTER 5. ON G,(z) = Gn(P(z)) FOR ORDER THREE 97

it follows that oy (z), as(x), as(z) # 0. Next we show that ay(x), as(z), asz(x) are non-
degenerate. We take £ € K such that a(§) = 27¢(£)? — 4b(£)® = 0. This implies that
D(&) = 0. From this we can conclude

u() = 3\/@= \/@ = \/@ and  v(€) = u(é).

Therefore we have

_ o, (26
O!l(f) =2 T

On the other hand we get

2(6) = as(6) =~/ "2

which implies that a;(x) differs from ay(z) and as(z) by more than a root of unity,
because b(£) # 0 by condition (3) in the theorem.
Now assume that we have

as(z) = Caz(x), (€ K.

This yields

_ 1_ 1_
(143D L (0 4 o(e)) - 1 Cae)
As above we derive a contradiction unless ( = 1. But assuming ¢ = 1 yields
2i/348) — (@) 3 vie) _,

contradicting the fact that u(z) = v(z) <= D(z) = 0.
Because of Lemma 5.4 we can conclude in the same way as above that the same
holds for oy (P(x)), as(P(x)), as(P(z)).

Next we want to proof the ¢;(x), g2(x), g3(x) # 0 holds. Observe that they are given
by (5.25), (5.26) and (5.27) respectively.

First observe that for £ € K we have: A(§) =0 <= ay(§) = a3(§) and A(¢) =
0= a1(&) # az(§), a3(€). We will need

(o) = 2220 (64(0) - G (0)lalo) - (0)] + Gulo)as(w)as(o)
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and
Ga(z) — Gi(z)[a(z) — a1 (z)] + Go(z) 2 (z)as(z) =
= Gy(z) — a(z)G4(z) + @Gl(x) + G (2)[u(z) +v(z)] + Ga(z)[u(z)?

a(z)”
9

Observe that 3u(z)v(z) = p(z). Let £ € K with ¢(¢) = 0. This implies

[u(z) +v(x)] + Go(x)

— Ga(x)u(z)v(z).

U(f):% p(§) and U(f)Z—% p(§)

and therefore u(€) + v(€) = 0. Because of the above equation and condition (4) from
the theorem we get

91(5) # 0.

To handle gy(x), g3(z) we prove the following lemma which will also enable us to
calculate v(gs) and v(go) where v extends v¢ to F' for some £ € K.

Lemma 5.5. Let (G,(2))52, be a sequence of polynomials defined by (5.1) and assume
that ged (G5 — 5bG2Go — $bG2 + S6°GE, D) = 1. Let £ € K be a common root of a(z)
and D(x) and let v be an extension of ve to F. Then v(g1A) = v(g2A) = 0.

Proof. Since D(§) = 0 we have ay(§) = a3(§) and by equation (5.26) we have to show
that
I/(GQ — G1 (CL - 052) + G()Otlag) =0.

Observe that it is clear that we have > 0 since the «o;(z), ¢ = 1,2, 3 are integral over
K]z]| and the integral closure is a ring. Therefore it suffices to show that

(G2 — G1 (a — (1/2) + G()O!loég)(f) 7é 0,

but this follows from our condition: We have
(G2 + Graz + Goayas)(§) = (@ - %Glx/Z’E - %bG()) €).
Assume this value to be zero. Then
(G2~ 3360)* = 31G2](©) =0,

contradicting the assumption in our Lemma.
The same holds for go(z) and therefore the proof is finished. O
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We are intended to prove that the systems of equations (5.19), (5.20) and (5.21)
are not solvable. Observe that each of this systems contain at least one equation of the
form

gi(z)ai(z)" = gx(P(z))ow(P(x))™ (5.30)

with i,k € {2,3} not necessarily different. We will show that already this equation
cannot have a solution.

We have deg D(P) = deg Ddeg P > deg D > 0, as deg P > 1 by assumption (2).
Hence D(P(xz)) has a zero £ € K such that

ve(D(P)) > ve(D) > 0
which is also a zero of a(P(z)) which means v¢(a(P)) > 0. This implies that there is a
finite valuation v on F' such that by Lemma 5.5

W(5:(P)) = v(ea(P) = —v(A(P)) = ~ Lv(D(P)).

Moreover, we can conclude that v(as(P)) = v(as(P)) = 0, because otherwise we would
get a contradiction to condition (2) of our theorem.

Thus equation (5.30) implies

v(gi) +nv(eg) = v(gr(P)),

which yields
nv(as) = v(ge(P)) — v(g) < —v(A(P)) +1(8) <0,

hence (5.30) has no solution in n, if v(a;) > 0 and at most one, if v(a;) < 0, which
is impossible since «1(z), ao(x), az(x) are integral over K[z], as they are zeros of the
monic equation T° — a(z)T? — b(x)T — c(x) = 0 with coefficients in K[z]. Therefore,
we have v(a;) > 0. Consequently (5.30) has no solution.

So, we have shown that (5.19), (5.20) and (5.21) have no solutions (n,m) € Z? with
n,m > 0,n # m. It is clear that we get the same bound as in Theorem 5.1. O



Chapter 6

A polynomial variant of a problem
of Diophantus and Euler

In this chapter, we prove that there does not exist a set of four polynomials with integer
coefficients, which are not all constant, such that the product of any two of them is
one greater than a square of a polynomial with integer coefficients.

This chapter is identically equal to a joint paper with A. Dujella which is to appear
in Rocky Mount. J. Math. (cf. [33]).

6.1 Introduction

Let n be an integer. A set of m positive integers is called a Diophantine m-tuple with
the property D(n) or simply D(n)-m-tuple, if the product of any two of them increased
by n is a perfect square. The first D(1)-quadruple, the set {1,3,8,120}, was found by
Fermat. The folklore conjecture is that there does not exist a D(1)-quintuple. In 1969,
Baker and Davenport [6] proved that the Fermat’s set cannot be extended to a D(1)-
quintuple. Recently, Dujella proved that there does not exist a D(1)-sextuple and there
are only finitely many D(1)-quintuples (see [32]).

In the case n = —1, the conjecture is that there does not exist a D(—1)-quadruple
(see [27]). It is known that some particular D(—1)-triples cannot be extended to D(—1)-
quadruples (see [14], [28], [65], [57]). Let us mention that from [29, Theorem 4] it follows
that there does not exist a D(—1)-33-tuple.

This n = —1 case is closely connected with an old problem of Diophantus and Euler.
Namely, Diophantus studied the problem of finding numbers such that the product of
any two increased by the sum of these two gives a square. He found two triples {4, 9, 28}

5 9 9 65

and {13—0, %, %} satisfying this property. Euler found a quadruple {3, <, 557, 555} (see

100
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[25], [24]). In [31] an infinite family of rational quintuples with the same property was
given. Since

zy+z+y=@+1)(y+1)-1,
we see that the problem of finding integer m-tuples with the same property is equiva-
lent to finding D(—1)-m-tuples.

A polynomial variant of the above problems was first studied by Jones [55], [56],
and it was for the case n = 1.

Definition 6.1. Let n be an integer. A set {ai,as,...,an} of m polynomials with
integer coefficients, which are not all constant, is called a polynomial D(n)-m-tuple if
for all1 <1 < j <m the following holds: a; - a; +n = bfj, where b;; € Z[z].

A natural question is how large such sets can be. Let us define

P, = sup{|S| : S is a polynomial D(n)-tuple }.

From [29, Theorem 1] it follows that P, < 22 for all n € Z. The above mentioned result
about the existence of only finitely many D(1)-quintuples implies that P, = 4.

In the present chapter, we will prove that P_; = 3. First of all, P_; > 3. More
precisely, if a - b — 1 = 72, then

{a,b,a+b+2r}
is a polynomial D(—1)-triple. E.g.
{2® +1,2% + 2z + 2,42° + 42 + 5}

is a polynomial D(—1)-triple (see [14]). Therefore, we have to prove that P_; < 4, and
this is the statement of our main theorem.

Theorem 6.1. There does not ezist a polynomial D(—1)-quadruple.

The proof of Theorem 6.1 is divided into several parts. In section 6.2, we trans-
form our problem into a system of polynomial Pellian equations, which leads to finding
intersections of some binary recursive sequences. We obtain some useful information
about initial terms of these sequences.

In section 6.3, we show that there is no loss of generality in assuming that one
element of our initial triple is equal to 1. This, together with results from section 6.2,
allow us to completely determine initial terms of corresponding sequences.

In section 6.4, we prove Theorem 6.1 by showing that our sequences cannot have
nontrivial common terms. This is done by comparing degrees and leading coefficients
of corresponding polynomials.
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6.2 Two sequences of polynomials

Let Z*[z] denote the set of all polynomials with integer coefficients with positive lead-
ing coefficient. For a,b € Z[z], a < b means that b— a € Z*[z]. The usual fundamental
properties of inequality hold for this order. For a € Z[z|, we define |a| = a if a > 0,
and |a| = —a if a < 0.

If {a,b,¢,d}, a < b < ¢ < d is a polynomial D(—1)-quadruple, then d is non-
constant. Assume now that a and b are constant polynomials. Considering leading
coefficients of ad — 1 and bd — 1 we conclude that ab is a perfect square, contradict-
ing the assertion that ab — 1 is also a perfect square. Therefore, we proved that in a
polynomial D(—1)-quadruple there is at most one constant polynomial. It is also clear
that all leading coefficients of the polynomials in a polynomial D(—1)-m-tuple have
the same sign. This implies that there is no loss of generality in assuming that they
are all positive, i.e. that all polynomials are in Z*[z].

Let {a,b,c}, where 0 < a < b < ¢, be a polynomial D(—1)-triple and let r,s,t €
Z*[z] be defined by

ab—1=7r* ac—1=5% bc—1=1t%.

In this chapter, the symbols r,s,t will always have this meaning. Assume that d €
Z7"[z],d > ¢, is a polynomial such that {a,b,c,d} is a polynomial D(—1)-quadruple.
We have

ad—1=1u% bd—1=19y% cd—1=2> (6.1)

with u,y, z € Z"[z]. Eliminating d from (6.1) we obtain the following system of poly-
nomial Pellian equations
az’ —cu® = c—a, (6.2)

bz? —cy? = c—b. (6.3)

We will describe the sets of solutions of equations (6.2) and (6.3). We will follow the
arguments in the classical case of Pellian equations in integers (cf. [30]).

Lemma 6.1. If (z,u) and (z,y), with u,y, z € Z"[z], are polynomial solutions of (6.2)
and (6.3) respectively, then there exist 2y, ug € Zlz| and z1,y; € Z[z] with

(i) (20,u0) and (z1,y1) are solutions of (6.2) and (6.3) respectively,
(i) the following inequalities are satisfied:
0<L |U0‘ <s, (64)

0< 2 <ec, (6.5)



CHAPTER 6. A POLYNOMIAL VARIANT OF A PROBLEM 103

0< |yl <t, (6.6)
0< 2z <cg, (6.7)

and there exist integers m,n > 0 such that
2va+u/e = (20v/a + ug/c)(s + Vac)™™, (6.8)
Vb +yve = (2Vh+ yiVe)(t + Vbe)™, (6.9)

where this means that the coefficients of \/a, Vb and V¢ respectively on both sides are
equal.

Proof. It is clear that it suffices to prove the statement of the lemma for equation (6.2).
First observe that

(5 +vac)*™ = (s* + ac + 2sv/ac)™ = (2ac — 1 + 2s\/ac)™

and by multiplying with the conjugate (s — \/ac)?™ we see that

(s + Vac)™(s = Vac)™™ = (s* — ac)™™ = (-1)"" = L. (6.10)

Let now (z,u) be a solution of (6.2) in polynomials from Z*[z]. Consider all pairs
(2*,u*) of polynomials of the form

Z*Va +utve = (zva +uve)(s + Vac)*™™, m € Z.

By (6.10) it is clear that (2*,u*) satisfies (6.2).

We would like to show that z* > 0. We write (s + \/ac)*™ = A + B+/ac, where
A, B € Z|z] satisfying A*> — acB? = 1. Therefore we have

2*Va + u*/c = (z/a + u\/c)(A + By/ac) = (Az + cuB)v/a + (Au + azB)/c,
and this yields
2" = Az + cuB.

Now, if m > 0 then we have A, B > 0 and thus z* > 0. On the other hand, if m < 0
we have A > 0, B < 0. If we assume that z* < 0, we have Az < —Bcu and both sides
are > 0. Squaring yields A%22%2 < B?¢%22. Using the fact that A? — acB? = 1 we obtain
22B%ac + 2?2 < B?c?*u? and therefore

22 < eB*(cu? — az?) = cB*(a —¢) < 0,

a contradiction.
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Among all pairs (z*,u*), we can now choose a pair with the property that z* is
minimal, and we denote that pair by (2o, ug). Define polynomials 2z’ and u" by

Z'Va +u'\/e = (z0v/a + ugv/c)(2ac — 1 — 2sev/ac),

where ¢ = 1 if ug > 0, and ¢ = —1 if uy < 0. From the minimality of z; we conclude
that 2/ = 2z9(2ac — 1) — 2csuge > 2o and this leads to cs|ug| < z¢(ac— 1) and further to
clug| < sz9. Squaring this inequality we obtain

2 _ 2,2 2 _ 2
aczy — c(c — a) = cCuy < aczy — 2§

and finally

2zt <clc—a) < ¢,

which implies (6.5). Now we have
cug = azg —c+a<ac®—a’c—c+a<ac®—c=cs’ (6.11)

and therefore we obtain also (6.4). Hence, we have proved that there exists a solution
(20, up) of (6.2), which satisfies (6.4) and (6.5), and an integer m € Z such that

z2v/a + uv/e = (z0v/a + ugv/e)(s + Vac)*™.

It remains to show that m > 0. Suppose that m < 0. Then, as above, we have (s +
Vac)’™ = A — By/ac, with A, B € Z*[x] satisfying A? — acB? = 1. We have u =
Aug — zpBa and from the condition u > 0 we obtain Aug > zyBa and by squaring
u3 > B%a(c — a) > ac — a?, which by (6.11) implies

acz—aQCgcug SGCZ—CL2C—C+&.

This implies —c 4+ a > 0, which is clearly a contradiction. U

The solutions z arising, for given (zy,ug), from formula (6.8) for varying m > 0
form a binary recurrent sequence (vp,)m>o whose initial terms are found by solving
equation (6.8) for z when m = 0 and 1, and whose characteristic equation has the
roots (s + v/ab)? and (s — v/ab)?. Therefore, we conclude that z = vy, for some (o, ug)
with the above properties and integer m > 0, where

Vo = 2o, U1 = (2ac — 1)2¢ + 2scug, Vpmio = (4ac — 2)Vpme1 — V. (6.12)

In the same manner, from (6.9), we conclude that z = w, for some (z1,y;) with the
above properties and integer n > 0, where

wo = 21, w1 = (2bc — 1)21 + 2tcyr, Wpyo = (4bc — 2)wyy1 — Wy. (6.13)

Now the following congruence relations follow easily from (6.12) and (6.13) by induc-
tion.
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Lemma 6.2. Let the sequences (vy,) and (w,) be given by (6.12) and (6.13). Then we
have
Um = (—1)2 (mod 2¢), w, = (—1)"2z (mod 2c).

Proof. Tt suffices to prove the statement of the lemma for v,,. By looking on (6.12) we
have
Vo = 2o, V1 = —2p (mod 2c).

Proceeding the induction step, we see using (6.12)
Vo = —2(=1)" 2 — (=1)™25 = (=1)™"?2; (mod 2¢),

as stated. O

Now we can prove the following lemma, which says that a solution of v,, = w,
implies also a solution at the beginning of the sequences.

Lemma 6.3. If the equation v, = w, has a solution, then zy = z.

Proof. Assume that v,, = w, has a solution. By Lemma 6.2 we conclude
20 = +2z1 (mod 2c¢).

If we assume that zp = z; (mod 2c¢), then we can conclude by using (6.4) and (6.7)
from Lemma 6.1, namely
0<Z()<C, 0<Zl<ca

that zyp = z; holds. If we assume that zp = —2z; (mod 2¢), we have 2¢|zy + 27, which
contradicts the fact that zy + z; < 2¢. This finishes the proof. U

6.3 Reduction to the case a =1

In this section, we show that it suffices to prove that polynomial D(—1)-triples {a, b, c},
where @ = 1, cannot be extended to a polynomial D(—1)-quadruple.

Lemma 6.4. Let {a,b,c,d} with0 < a < b < ¢ < d be a polynomial D(—1)-quadruple.
Then there exists dy € ZT[x] with dy < ¢ such that ady — 1, bdy — 1, cdy — 1 are perfect
squares.

Proof. We are interested in sequences (v,,) (and (wy,)) such that 22 = v2, = w? = cd—1,
where d € Z"[z]. This implies that v2, = —1 (mod c¢). By Lemma 6.2 this means

7zt = —1 (mod ¢).
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In this case we define

2
1

do = % € Z*[x].

For this dy we have
Cdo —1= Zg
By Lemma 6.3 we find
241 2 —b+b
bdo—lzbzl+ _lzcyl—i-c + —lzyf

c c

and finally also
7 +1 1 1 9

adp—1=ua —1==(azf +a—c)= ~cuy = uj
c c

c
holds. Furthermore, we have
cdy = 25 +1 < ¢,
which implies
do <ec.
O

Assume now that {a, b, ¢, d} is a polynomial D(—1)-quadruple with minimal d. We
may use Lemma 4 to construct dy. From the minimality of d, it follows that {a, b, c, dy}
is not a polynomial D(—1)-quadruple and this means that dy € {a, b}. But this implies
that d? — 1 is a perfect square, which can only hold in the case when dy = 1. Since
b > a > 1, we conclude that a = 1.

Remark 6.1. It follows that it suffices to consider polynomial D(—1)-quadruples,
which contain the constant polynomial 1.

Now let {1,b,c} with 1 < b < ¢ be a polynomial D(—1)-triple. By the previous
discussion, we have dy = 1. This implies that 25 +1 = ¢ and therefore we have zy = =+s.
Because of the fact that zg > 0 we have z; = s. In the same way, we can conclude that
21 = 8. Now we have

cup=zg—c+l=c—1—-c+1=0
and this yields uy = 0. Finally we get
cff=b—c+b=blc—1)—c+b=bc—c=cr
and therefore y; = +r. To sum up, it suffices to consider the following three sequences

vo =8, v1 = (2¢—1)8, Vo = (4¢ — 2)Upmy1 — U, (6.14)
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and
wo =8, wy = (2bc — 1)s + 2tcr, wpie = (4bc — 2)wp 11 — Wy, (6.15)
wy = s, wy = (2bc — 1)s — 2ter, w;, ., = (dbc — 2)w), | — w,,.

6.4 Proof of Theorem 6.1

Let {1,b,c} be a polynomial D(—1)-triple. Let us repeat the defining equations:
b—1=7r% c—1=5% bc—1=1t%.

In what follows, we need the leading coefficients of b and c¢. We know that b and c are
non-constant, and thus their leading coefficients are perfect squares. Let us give them
names:
le(b) = B2, le(c) =,

where 3 and 7 are positive integers. Let v, and w,,w, be the remaining sequences
from the last section. To finish the proof, we have to show that no nontrivial solution
is obtained from these sequences. The trivial solution is always vy = wg = s, which
leads to d = 1, which does not yield the extension of our triple {1,b, c}. We divide the
proof in three cases. The first one is handled in the following lemma.

Lemma 6.5. The equation v,, = w, has no nontrivial solution.

Proof. First let us mention that degv,, < degv,,+1, m = 0,1,2,.... To be precise we
have

1
deg v, = Edegc—i—mdegc, m > 0. (6.17)
This follows at once by induction using the recurring formula (6.14). The same is also
true for the second sequence w, with
1
degwn:idegc—}-n(degb—i-degc), n > 0. (6.18)
Again, by induction, we can now read off the leading coefficient of v,,, which is

22m—172m+1 m 2 1

b

We have Ic(vy) = v, lc(vy) = 27® and using the recursive formula (6.14) we get

292m—1, 2m+1 _ 92(m+1)=1, 2(m+1)+1

Ic(Umt1) = 47°1c(vm) = 4y v v

In the same way, we find the leading coefficient of w,,, which is

22nﬂ2n,y2n+l ]
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First we have lc(wg) = 7, le(w;) = 26%v%y + 28v7*8 = 43*+*. By using the recursive
formula for w,,, one finds

le(wny1) = 452’)’21(:(11)”) = 22”+2ﬂ2n+272n+3.

If the equation v,, = w, has a solution, we must have equal leading coefficients, which

means

22m71 2m—+1 — 22nﬂ2n72n+1'

Y

2m—n m—n 2
( 7 )ZQ’

2m—n,ym—n

V2=——p—eQ

a contradiction. Thus v,, = w,, cannot hold and the proof is finished. Ol

This implies

which yields

To handle the equation v,, = w],, we have to distinguish whether degb < degc or
deg b = deg c holds.

Lemma 6.6. Assume that degb < degc. Then the equation v,, = w,, has no nontrivial
solution.

Proof. First we calculate

wiwy, = (2bc —1)%s* — 4t°c*r? =
—4b%c® 4 4bc + ¢ — 1 + 4bc® — 4c2.
Because of our assumption degb < degc, we obtain that the dominating summand is

4bc3. Therefore we get
le(wiw,) = 44%9°

and
degwijw; = 3degc+ degb.

On the other hand, we already know that
le(w;) = 43
and 5
degw; = degb + 3 deg c.

Hence, we can conclude that

3
le(w)) =+* and degw| = 3 deg c.
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Now by induction and by the recursion (6.16) we get that degw;,, < degwy,,, and that
the leading coefficient of wy;, is given by

22n—2ﬂ2n—272n+1’ n 2 1

Namely we have le(wp) = 7, le(w]) = +* and using (6.16) we obtain
lc(w:z-kl) — 4ﬂ2’)/21(:(w;) — 22n52n,}/2n+3.

Again, if v,, = w;, has a solution, we can conclude by comparing the leading coefficients

that

22m—1 2m—+1 — 22n—2ﬁ2n—272n+1.

v

As before we get
\/5 — 2n—m7n—mﬂn—1 € Q,

which is a contradiction. This yields that in this case no solution can exist. ]

Before we can prove the remaining part, we need the following useful gap principle
for the elements of a polynomial D(—1)-m-tuple. The principle is a direct modification
from the integer case (see [29, Lemma 3]). The analogous statement for polynomial
D(1)-triples was proved by Jones in [56].

Lemma 6.7. Let {a,b,c} be a polynomial D(—1)-triple. Then there exist polynomials
e, u,y, z € Z[x] such that

ae+1=u? be+1=19>% ce+1=2

and
c=a+b—e+2(abe + ruy).

Proof. Define
e=—(a+b+c)+ 2abc — 2rst.

Then

(ae +1) — (at —rs5)> = —a(a+b+c)+2a°bc— 2arst +1 —
—a*(bc — 1) + 2arst — (ab— 1)(ac — 1) = 0.

Hence, we may take u = at — rs, and analogously y = bs — rt, z = cr — st. We have

abe +ruy = —ab(a+ b+ c)+ 2a°b*c — 2abrst + abrst —
—a(ab—1)(bc — 1) — b(ab — 1)(ac — 1) + rst(ab—1) =
= abc— (a+b) — rst,
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and finally
a+b— e+ 2(abe + ruy) = 2a + 2b + ¢ — 2abc + 2rst + 2abc — 2a — 2b — 2rst = c.
U

Using this lemma we can finish our proof.

Lemma 6.8. Assume that degb = degc. Then the equation v,, = w,, has no nontrivial
solution.

Proof. First we conclude by Lemma 6.7 that there exist polynomials e, f, g, h such that
e+1=f? be+1=g% ce+1=h> (6.19)

and
c=1+b—e+2(be+rfg).

By looking at the proof of Lemma 6.7, we see that we have
e=—1—b—c+ 2bc— 2rst.

We want to show that e = 0. Let us assume e # 0 and define
€=—1—0b—c+H 2bc+ 2rst.

Then
dege = degb + degc = 2degc = deg ¢’ (6.20)

Let us calculate

ee = (2bc—1—b—c)? —4r’s*t? =
(2bc—1—b—c)*—4(b—-1)(c=1)(bc—1) =
= 140+ —2b—2bc—2c+4.

This yields
dege + degé = degee < degc®.

Using (6.20), we can conclude
dege < 0.

But looking at (6.19) we see that

2

e+1=¢? and e=?

must hold with ¢,y € Z. This is only possible if e = 0.
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This implies now that f = 1,9 = 1 and ¢ = 1 + b + 2r. Next let us express all
polynomials in terms of the polynomial r. We have

b=r?+1,
and therefore
c=1242r+2.
Next we calculate s> =c—1=0b+2r =72+ 2r +1 = (r 4+ 1)?, thus

s=r+1.

In the same way, we get via t? = be—1 = (r24+1)(r?+2r+2)—1 = r*+2r3+3r*+ 2r+1 =
(r* + 7+ 1), that
t=r’+r+1.

This gives us
w; = (2bc—1)s — 2ter =
= '+ 4r*+6r*+4r +3)(r+1) =20+ +r)(r? +2r +2) =
= 2r’+3r+3.

From this we conclude that
degw] = degc

and by induction, using the recurring formula (6.16), we get

degw! =degc+2(n—1)dege, n>1.
Let us assume that v,, = w], has a solution. Then by comparing the degree of v,
which is given by (6.17), and the degree of w),, we get

1
§degc+mdegc: dege+2(n —1)dege

and

1
- — 9 —1
2—|—m n ,

a contradiction. Therefore v,, = w), cannot have a solution and the proof is finished. [J

Now Theorem 6.1 follows directly from Lemma 6.5, Lemma 6.6 and Lemma 6.8.



Chapter 7

Diophantine m-tuples for linear
polynomials

In this chapter, we prove that there does not exist a set with more than 26 polyno-
mials with integer coefficients such that the product of any two of them plus a linear
polynomial is a square of a polynomial with integer coefficients.

This chapter is equal to a manuscript which is joint work with A. Dujella and R.
F. Tichy (cf. [34]).

7.1 Introduction

Let n be a nonzero integer. A set of m positive integers {aq,as,...,ay,} is called a
Diophantine m-tuple with the property D(n) or simply D(n)-m-tuple, if the product
of any two of them increased by n is a perfect square.

Diophantus [25] found the first quadruple {1, 33, 68,105} with the property D(256).
The first D(1)-quadruple, the set {1,3, 8,120}, was found by Fermat. The folklore con-
jecture is that there does not exist a D(1)-quintuple. In 1969, Baker and Davenport
[6] proved that the Fermat’s set cannot be extended to a D(1)-quintuple. Recently,
Dujella proved that there does not exist a D(1)-sextuple and there are only finitely
many D(1)-quintuples (see [32]).

The natural question is how large such sets can be. We define
M,, = sup{|S| : S has the property D(n)},

where |S| denotes the number of elements in the set S. Dujella proved that M, is finite
for all n € Z\{0}. In his proof he estimated the number of “large” (greater than |n|®),
“small” (between n? and |n|®) and “very small” (less than n?) elements of a set with
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the property D(n) by using a theorem of Bennett [8] on simultaneous approximations
of algebraic numbers and a gap principle in the first, a weaker variant of the gap
principle in the second and a large sieve method due to Gallagher [52] in the third case
respectively (cf. [29]). Let us introduce the following notation:

A, =sup{|SN[n|> cc)|: S has the propertyD(n)},
B, =sup{|SN[n? |n*)| : S has the propertyD(n)},
C, = sup{|SN[1,n?)|: S has the propertyD(n)}.

His result was (cf. [29, Theorem 1, 2, 3 and 4])

A, <21,
B, <0.65log|n|+ 2.24,

o < | 26555 log|n|(loglog|n|)? + 9.011loglog [n| for |n| > 400,
"5 for |n| < 400.

Therefore

M, <32 for |n| < 400,
M, < 267.81log |n|(loglog|n|)? for |n| > 400.

A polynomial variant of the above problems was first studied by Jones [55], [56],
and it was for the case n = 1.

Definition 7.1. Let n € Z[z| and let {ay, as, ..., an} be a set of m nonzero polynomi-
als with integer coefficients. We assume that there does not exist a polynomial p € Z[z]
such that a1/p,...,a,/p and n/p* are integers. The set {ai,as,...,a,} is called a

2

polynomial D(n)-m-tuple if for all 1 <i < j < m the following holds: a; - a; +n = b,

where b;; € Z[z].

Let us mention that the assumption that there does not exist a polynomial p such
that a1 /p, ..., a,/p and n/p* are integers means for constant n that not all elements
ai,-.-,a;, of a polynomial D(n)-m-tuple are allowed to be constant (compare with
Definition 1 in [33] and with Definition 6.1). For linear n the condition under consid-
eration is trivially always satisfied.

In analog to above we are interested in the size of
P, =sup{|S|: S is a polynomial D(n)-tuple}.

From the result above (cf. [29, Theorem 1)) it follows that P, < 22 for all n € Z.
The above mentioned result about the existence of only finitely many D(1)-quintuples



CHAPTER 7. D(n)-m-TUPLES FOR LINEAR POLYNOMIALS 114

implies that P; = 4. Recently, Dujella and the author proved that P_; = 3 (cf. [33], see
also Chapter 6) by successfully transferring the needed methods to the polynomial case.

The results of [29], by specialization, give a bound for P, in terms of the degree
and the maximum of the coefficients of n. We conjecture that there should exist a
bound for P,, which depends only on the degree of n. As we have seen, this is true
for constant polynomials, and in the present chapter we will prove this conjecture for
linear polynomials.

We want to handle the case for linear polynomials, i.e. n = ax + b, with integers
a # 0 and b. Let us define

L = sup{|S| : S is a polynomial D(az + b)-tuple for some a # 0 and b }.

We are intended to prove that L < oo. More precisely, we want to find some good
upper bound for L.
It is easy to prove that L > 4. E.g. the set

{z,16x + 8,25z + 14, 36x + 20}
is a polynomial D(16z + 9)-quadruple and the set
{1,92% + 8z + 1,92% + 14z + 6, 362> + 44z + 13}

is a polynomial D(4z + 3)-quadruple (see [26]).
The idea is to estimate the number of polynomials in S with given degree and to
consider separate cases whether the degree is “large” or “small”.

In analog to the classical case, we prove our result for “large” degree by using a
theorem due to Mason [62] on the polynomial solutions of hyperelliptic equations over
function fields in one variable and a gap principle. Let S be a polynomial D(azx + b)-
m-tuple with integers a # 0 and b. We prove

Theorem 7.1. There are at most 15 polynomials in S with degree > 4.

We want to remark that a weaker result can be shown by applying the results from
the classical integer case. From that it is possible to show that there are at most 21
polynomials in S with degree > 4.

We have to estimate the number of constant, linear, quadratic and cubic polynomi-
als in S. We denote these numbers by Lg, L1, Lo, L3 respectively and we will consider
them separately. First of all it is trivial to see that we have

Ly < 1.

By using the mentioned gap principle once more, we get
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Theorem 7.2. There are at most three polynomials in S of degree 3. Therefore, we
have
Ls < 3.

Let us remark that in fact the proof gives us the following result: There is no
polynomial D(ax + b)-quadruple which consists of polynomials all having the same
degree 1 > 3. For the case n = 1 this was already proved by Jones in [56].

By more detailed analysis we get

Theorem 7.3. There are at most five polynomials in S of degree 2. Therefore, we have
Ly <5.

Theorem 7.4. There are at most eight linear polynomials in S. Therefore, we have
Ly <8.

Altogether, we can prove the following bound for the size of polynomial D(n)-m-
tuples for linear polynomials n = ax + b.

Theorem 7.5.
L < 26.

In section 7.2, we will collect auxiliary results which are needed to prove our the-
orems. In section 7.3, we handle Theorem 7.1 and 7.2 which are the cases of large
degrees. In section 7.4, we prove the results for the small degrees, i.e. Theorem 7.3 and
7.4 and therefore finally get Theorem 7.5.

7.2 Auxiliary results

Before we can go to the proofs of the theorems, we need the following useful construction
with the elements of a polynomial D(n)-triple where n is a polynomial with integer
coefficients. The construction is a direct modification from the integer case (see [29,
Lemma 3]). The analogous statement for polynomial D(1)-triples was proved by Jones
in [56] and we did already use it in the case n = —1 (cf. [33] and Lemma, 6.7 in section
6.4).

Lemma 7.1. Let {a,b,c} be a polynomial D(n)-triple and let ab+mn = %, ac +n =
s2,bc+n = t?. Then there exist polynomials e, u,v,w € Z[z] such that

ae +n? =u? be+n® =% ce+n®=uw

More precisely,
e =n(a+ b+ c)+ 2abc — 2rst.
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Furthermore, it holds:
e 2
c=a+b+ —+ —(abe + ruv),
n o n

where u = at — rs,v = bs — rt.
Proof. We have

(ae +n?) — (at —rs)®> = an(a+ b+ c) + 2a’bc — 2arst +n* —
—a®(bc + n) + 2arst — (ab + n)(ac +n) = 0.

Hence, we may take u = at — rs, and analogously y = bs — rt, z = cr — st. We have

abe +ruv = abn(a+ b+ c) + 2a*b*c — 2abrst + abrst —
—a(ab + n)(bc +n) — b(ab + n)(ac + n) + rst(ab+n) =
= —aben — n*(a + b) + rstn,

and finally
2 2ab 2rst  2ab 2rst
a+b+£+—2(abe+ruv) =2a+2b+c+ e a2 c—2a—26+£:c.
n o n n n n n
O
If we also define

e =n(a+b+c)+ 2abc + 2rst, (7.1)

then easy computation shows that
e-e=n*(c—a—b—-2r)(c—a—>b+2r). (7.2)

This equation will be very useful in the proof of Theorem 7.2, 7.3 and 7.4.

We conclude this section with the following definition: Let Z*[z] denote the set of all
polynomials with integer coefficients with positive leading coefficient. For a,b € Z[z],
a < b means that b — a € Z"[z]. The usual fundamental properties of inequality hold
for this order. For a € Z[x], we define |a| = a if a > 0, and |a| = —a if a < 0.

Observe that it is clear that all leading coefficients of the nonconstant polynomials
in a polynomial D(n)-m-tuple have the same sign. This implies that there is no loss of
generality in assuming that they are all positive, i.e. that all polynomials are in Z*[x].



CHAPTER 7. D(n)-m-TUPLES FOR LINEAR POLYNOMIALS 117

7.3 Elements with large degree

Assume that the set {a,b,c,d} is a polynomial D(n)-quadruple with n € Z[z|. Let
ab+n =r%ac+n = s% bc+n =t* where r,s,t € Z"[z]. In this chapter, the symbols
r, s, will always have this meaning. Moreover, we have

ad+n=1u? bd+n=12% cd+n=u?

with u,v,w € Z*[z]. Multiplying this equations we get the following hyperelliptic
equation
(uvw)? = (ad + n)(bd + n)(cd + n),

where we search for polynomial solutions d € Z[z]. We will apply Mason’s Theorem
1.14 to this equation.

Lemma 7.2. Let {a,b,c,d}, 0 < a <b < c<d be a polynomial D(n)-quadruple with
n € Z[z|. Then
degd < 51(dega + degb + degc) + 78 degn.

Proof. Let us denote X = abed and Y = abcuvw. Then by multiplying the above
equation with a?b%c® we get

Y% = (X + nbc)(X + nac)(X + nab).
The polynomial on the left hand side becomes

(X + nbe)(X + nac)(X + nab) =
= X? + n(ab + bc + ac) X + n®abe(a + b + ¢) X + na®b?c?

so this polynomial has coefficients and roots in Z[z|. Let S be the set of coefficients of
this polynomial, i.e.

S = {1,n(ab + bc + ac), n*abc(a + b + c), n*a’b*c*}.
Since the elements of S are polynomials, we get for each £ € C that
ve(S) = min{0, ve(s)} = 0.
se
Moreover, we have
Vo (S) = 56151{0, Voo(S)) = Isnelél{— degs} = — max deg s,

and by comparing the degrees of the elements of S we get

Voo (S) = —2(deg a + deg b + deg ¢) — 3degn.
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Therefore,

—_ Z min{(]’ v Z mlIl{O l/‘g } mln{o VOO(S)} =

=
= —min{0, v (S)} = 2(dega + deg b + degc) + 3 degn.

Thus, we have for the height H of the polynomial on the right hand side of our hyper-
elliptic equation
H = 2(dega + degb + degc) + 3degn.

By Mason’s Theorem 1.14 with L = C(z) and O = C[z] we therefore get
deg X < 52(dega + degb + degc) + 78degn,

where we have used that the genus of the rational function field C(z) is zero (which can
be found e.g. in [90], page 22) and that C(x) has only one infinite valuation, namely
Voo- But now by the definition of X = abcd we get

degd < 51(dega + degb + degc) + 78 degn

as claimed in our lemma. O

Observe that due to the sharpness of the fundamental inequality this bound is very
good. Especially, it does not depend on a gap which has to appear between the elements
of the quadruple as in the classical case (cf. [29, Lemma 2]).

We use Lemma 7.1 to prove the following gap principle. This is very similar to [29,
Lemma 4] in the classical case for integers.

Lemma 7.3. If {a,b, c,d} is a polynomial D(n)-quadruple where n € Z[z] and 2n* <
a<b<c<d, then
nd > 2bc.

Proof. We apply Lemma 7.1 to the triple {a, ¢, d}. Let e be defined as in Lemma 7.1.
Since ce + n? is a perfect square, we have that ce +n? > 0. Assume that e < —1, then

ce+n?< =20t +n?=-n?<0,
a contradiction. Therefore, we have e > 0. Observe that, if n > 0 we have

a? <ac+r*=ac+ab+n < na® <na(b+c)+n?
a*t* = a*(n + be) = na® + a®be < a*be + na(b + ¢) + n?

= (ab+n)(ac+ n) = r’s*> <
at <rs < u <0,
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and
V> <bc+r>=bc+ab+n < nb> <nbla+c)+n? <

b2s? = b2(ac +n) = ab’c + bn < ab’c + nb(a + ¢) +n? =
= (ab+n)(bc+n) = r’t*
bs <rt <= v <0.

In the same way one can show that n < 0 implies
u>0 and v >0.
Ife=0,thend=a+c+2s.If e > 1, then
n*d = n*(a + b) + en + 2(abe + ruv) > 2ab.

Note that we need here that uv > 0 which follows from the comments just made.

Analogously, we apply Lemma 7.1 to the triple {b,c,d} and obtain either d =
b+c+2t or n?d > 2bc. However, d = b+c+2t is impossible since s? = ac+n < be+n = t?
and therefore s < ¢t which implies a + ¢ + 2s < b+ ¢+ 2t and

n?(b+ ¢+ 2t) < n*4c < 2ac,

which follows from

tP=bc+n<(c—1)c+n=ct+n—-c<ct+n-n><c
since ¢ > 2n? and consequently t < c.

Hence, we proved
n?d > 2bc,

as claimed in our lemma. O

PROOF OF THEOREM 7.1.

Assume that {a,b, ¢, as,as,...,a15} is a polynomial D(n)-16-tuple and |n|* < a <
b<c<ay<as<...<ag We apply Lemma 7.2 to the quadruple {a, b, ¢, a6} and
obtain

dig < (abc)?n™ < n™ < 182, (7.3)

since |n]?® < c.
Lemma 7.3 implies nay > bc > |n|*c and ay > c¢|n|. Furthermore, n?as > asc >
c®|n| and |n|as > ¢®. In the same manner, Lemma 7.3 gives

n?ag > asas > ¢, |nla; > |nlagas >, |n|’ag >,
nay > 13, n|2as > ¢, nBay > ¢,
nMagy > ¢ n[agg > ¢, 2 a, > 44,
0015 > 8, [nfPaye > AT,
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which implies (since |n|® < c) that

173

Cc Qi1 > 0377

and therefore
g > %

a contradiction to (7.3). O

PROOF OF THEOREM 7.2.

Let S = {a,b,c} with a < b < ¢ be a polynomial D(n)-triple with linear n € Z|x]
and let dega = degb = degc = 3. Then by (7.1) we get dege = 9. But from (7.2) it
follows that degee < 8. Thus we have a contradiction unless e =0, i.e. ¢ = a + b+ 2r.
Consequently, if we fix ¢ and b, then ¢ is unique, which implies that S cannot be
extended to a polynomial D(n)-quadruple. Therefore,

L3 S 3;
as claimed in our theorem. O

Observe that Theorem 7.2 follows directly from Lemma 7.3, but the above proof
gives more information on triples of cubic polynomials.

7.4 Elements with small degree

First we prove Theorem 7.3. Here the argument from the proof of Theorem 7.2 does
not longer work. The polynomials e which are induced by a polynomial D(ax +b)-triple
in Lemma 7.1 are constants. The proof uses the fact that u? —n? = (u — n)(u +n) is
a complete factorization of the polynomial a up to the constant factor e.

PROOF OF THEOREM 7.3.

Let {a, b, ¢} with a < b < ¢ be a polynomial D(n)-triple with linear n € Z[x] and let
dega = degb = degc = 2. Then by (7.1) we get dege = 6. Now (7.2) implies that e is a
constant. Assume that two distinct e’s exist. We call them e and f. From ae + n? = u?
we see that a is a product of two linear polynomials:

a=alx—ay)(r—a).
Let us assume that we have

u—n=ci(r—ay), u+n=cer—ay),
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where €169 = ae. It implies
2n = x(e9 — €1) + €100 — €201 -
In the same manner, we can conclude from af + n? = u? that
u—n=p(r—a), u+n=e(r—a),

or
u—n=pi(r—a), u+n=qp(x—ag)

holds. Let us first consider that the first of this equations holds. Then we get

2n = x(goz — g01) + p1a9 — Y201,

where @109 = af. Hence, €9 — €1 = 9 — 1, €100 — €201 = @109 — paa;. Consequently,
we have ag(e1 — 1) = a1(e2 — p2) = a1(e1 — ¢1). We have two possibilities: 1 = ¢; or
Qg = Qaq.

We first assume ¢; = ;. This implies also 5 = ¢y and therefore e = f, a contradic-
tion. Now we assume that ag = a; holds. Then z — ag|n and together with ab+n = r?
this implies x — ag|r. Therefore (z — ap)?|n, and we obtained a contradiction since n is
a linear polynomial.

Now let us consider the second case. So assume that we have
u—n=p(r—a), u+n=ep(r—a),
where ¢, @9 are as above. It implies

2n = x(p; — 1) + Y101 — Pa00.

Hence, €9 — &1 = Y2 — P1,E1Q9 — €201 = P1A1 — P20ayg. This yields, 00(61 + QDQ) =
ai(p1 + €2) = ap(e1 + ¢2). We have again two possibilities: e = —p, which implies
€9 = —¢; and therefore e = f, a contradiction, or ay = a;. But as above this yields a
contradiction with the assumption that n is a linear polynomial.

Therefore, there is at most one such constant e. It follows that for fixed a and b,
there are at most three ¢, namely ¢ = a+ b+ 2r and two possible ¢(e) which come from

2
c=a+b+g+—2(abe+2ruv),
non

where u, v satisfy ae + n? = u?,be + n? = v2. This last equations fix v and v only up
to the sign and therefore we get two possible ¢’s in this case. Consequently we get

L2S57
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which was claimed in Theorem 7.3. O

As in the proof before we will see that also the proof of Theorem 7.4 heavily de-
pends on the fact that we are considering linear polynomials. Especially, we will use
that (7.2) is the complete factorization of the product ee.

PROOF OF THEOREM 7.4.
Let S = {a, b, c} with a < b < ¢ be polynomial D(n)-triple with linear n € Z|z] and
let dega = degb = degc = 1. Then by (7.1) we get dege = 3. Now (7.2) implies that

dege < 1.

From ab + n = r? it follows that at most one of the elements in S is divisible by n.
Indeed, assume that a and b are divisible by n. Then n|r and n?|n, which contradicts

the assumption that n is linear polynomial. Thus we may assume that a, b, c are not
divisible by n. We have

e+¢€=2n(a+0b+c)+ 4abe. (7.4)
€ — e = 4rst. (7.5)

If nle, then (7.2) implies that n|e and therefore, by (7.4), we get n|abe, a contradiction.
Therefore, e = § - (c —a — b+ 2r), § € Q. Assume that § # 0. We have

1
E=n2(c—a—b:F27")5.

This implies

e el

S — ﬁ = :*:4’/’
or )

ne_ e = +4n’r

)

or )
% — ed = 4r(dst £+ n?).

This can be written as .

g(n2 — 8%) = 4r(dst £ n?).

Hence, there are two possibilities: r|e or r|n £ 4.

If r|e, then by (7.5) we have r|e which yields

r?n*(c—a—b—2r)(c—a—b+2r).
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If r|n, then from ab+n = r? we conclude r|a or r|b. Both cases lead to a contradiction
since this would imply n|a or n|b. Observe that r and n only differ by a constant factor
since they are both linear. Thus, rlc—a—b,say c=a+b+71-p, p € Q. But from this
we get

ac+n=a*+ab+arp+n=a’>+1r*+par =5’

(2r + pa)? — (p* — 4)a® = (25)*.

Now, if p = +2 then ¢ = a + b+ 2r. Observe that by considering leading coefficients it
is clear that a + b — 2r < b so this case is impossible and it remains the possible case
¢ =a+ b+ 2r. Otherwise if p # +2, we have

(p* — 4)a* = (2r + pa — 25)(2r + pa + 25s)

which implies a|r and als, and moreover, using ab+n = r?, we get a|n or equivalently
nla, a contradiction.

Therefore, it remains the case r|n + 0. It means that § is unique. It is defined by
n = FJ (modr). Let n = dy (modr). We have the following possibilities for ¢, namely
c=a+b+2r and c(e), where e = (¢ —a — b+ 2r)(—dy) or e = (¢ —a — b — 2r) - dy.
Each of this two e’s induce at most two ¢’s as we have seen at the end of the proof of
Theorem 7.3. Therefore, we have at most seven linear polynomials in S which are not
divisible by n. We get
Ly <3,

and so the proof is finished. O
Now we are ready to prove our bound for L.

PROOF OF THEOREM 7.5.

Let S be a polynomial D(ax + b)-m-tuple with some integers a # 0 and b. From
the fact that the product of each two elements from S plus ax + b is a square of a
polynomial with integer coefficients it follows that the set S contains a polynomial
with degree > 2, then it contains either polynomials with even or polynomials with
odd degree only. Together with the upper bound for the number of polynomials in S
with degree > 4, this implies that we have

S| < 11+ 16 = 27.

This proves our theorem. O
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