
ON A PROBLEM OF DIOPHANTUS FOR RATIONALS
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Abstract. Let q be a nonzero rational number. We investigate for which q there are
infinitely many sets consisting of five nonzero rational numbers such that the product
of any two of them plus q is a square of a rational number. We show that there are
infinitely many square-free such q and on assuming the Parity Conjecture for the twists
of an explicitly given elliptic curve we derive that the density of such q is at least one
half.

For the proof we consider a related question for polynomials with integral coefficients.
We prove that, up to certain admissible transformations, there is precisely one set of
non-constant linear polynomials such that the product of any two of them except one
combination, plus a given linear polynomial is a perfect square.

1. Introduction

Let q be a nonzero rational number. A set {a1, . . . , am} of nonzero integers (rationals)
is called a (rational) D(q)-m-tuple, if aiaj + q is a square of a rational number for all
1 ≤ i < j ≤ m. This definition also makes sense in any ring instead of Z resp. Q, in
particular for the ring Z[x]; in this case we shall say that {a1, . . . , am} is a polynomial
D(q)-m-tuple. By now this type of problem is well-known, the oldest references go back
to Diophantus, Euler and Fermat; for an overview we refer e.g. to [4]. Instead of giving a
complete historical overview we shall just mention a few results directly relevant for our
considerations below. In [8], it was shown that for any rational q there exist infinitely many
rational D(q)-quadruples. In this paper we study the question for which rationals q there
exist infinitely many rational D(q)-quintuples. An affirmative answer to this question is
known for rationals of the forms q = r2, q = −r2 and q = −3r2. The result for q = r2

was known already to Euler (see [17]), who proved that any D(1)-pair can be extended
to a rational D(1)-quintuple (see [1, 6] for generalizations). The result for q = −r2 is
based on the fact that the elliptic curve associated to the quartic curve y2 = −(x2 −
x − 3)(x2 + 2x − 12) has positive rank (see [9]), while the result for q = −3r2 uses the
fact that the elliptic curve y2 = x3 + 42x2 + 432x + 1296 has positive rank (see [8]). It
is clear that we may restrict our attention to square-free integers q, since by multiplying
all elements of a D(q)-m-tuple by r we get a D(qr2)-m-tuple. In this paper, we will show
that infinitely many square-free numbers q have the property that there exist infinitely
many D(q)-quintuples. Furthermore, conjecturally the set of all square-free integers for
which there exist infinitely many D(q)-quintuples has density ≥ 1/2. The proof is again
based on the rank of certain elliptic curves and will be given in Section 3.

Our starting point in Section 2 is the construction of a set of five linear polynomials
which “almost” has the property of being a polynomial D(q)-quintuple, for certain linear
polynomials q, in the sense that only one condition is missing. (Observe that a similar
notation of “almost” has already been observed in [14, Section 5].) We will explain the
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connection of this approach to the existence of q such that there are infinitely many D(q)-
quintuples and then formulate and prove the result (Theorem 1). In Section 3 we shall
relate the set appearing in Theorem 1 to a certain elliptic curve E and then establish the
above mentioned result on the infinitude of the set of q’s such that there are infinitely
many D(q)-quintuples (Theorem 3). In the final Section 4 we shall give some explicit
examples.

2. “Almost” Diophantine quintuples for linear polynomials

The result from [8] on the existence of infinitely many rational D(q)-quadruples for any
rational q, is a corollary of results in [4] on the existence of D(n)-quadruples for n ∈ Z. By
a result of Brown [3], it was known that for n ≡ 2 (mod 4) there does not exist a D(n)-
quadruple. It is proved in [4] that if n 6≡ 2 (mod 4) and n 6∈ {−4,−3,−1, 3, 5, 8, 12, 20},
then there exists at least one D(n)-quadruple. The proof uses polynomial formulas for
D(n)-quadruples, namely polynomial D(n)-quadruples where n itself is a linear poly-
nomial with integer coefficients and the elements of the set are polynomials with small
degree (typically, one constant and three quadratic, or four linear polynomials). E.g.
{1, 9x2 + 8x + 1, 9x2 + 14x + 6, 36x2 + 44x + 13} is a D(4x + 3)-quadruple, while
{4x, 25x+ 1, 49x+ 3, 144x+ 8} is a D(16x+ 1)-quadruple.

A natural idea to approach the question of the existence of D(q)-quintuples is to con-
struct similar sets of polynomials with five elements. However, results from [13] show that
there does not exist a set of five linear polynomials with integer coefficients, not all con-
stant, such that the product of any two of them plus a given linear polynomial is a square
of a polynomial with integer coefficients, and also that there is no such set consisting of
four quadratic polynomials, i.e. there is no (nontrivial) polynomial D(n)-quintuple with
linear n consisting of linear or quadratic polynomials.

Therefore, we relax the conditions in order to get an object (that is not a polynomial
m-tuple anymore) which can exist and which is still useful for our purpose (although
the application will not be so straightforward). Our aim is to follow the proof of the
mentioned result from [13] in order to characterize “almost” Diophantine quintuples for
linear polynomials, i.e. all sets of the form {a1x + b1, . . . , a5x + b5} such that for given
c, d ∈ Z, c 6= 0 we have that (aix + bi)(ajx + bj) + (cx + d) is a square of a polynomial
with integer coefficients for all 1 ≤ i < j ≤ 5, except for one pair, say, without loss of
generality, (i, j) = (4, 5). We shall call such a set an almost D(cx+ d)-quintuple.

There are two obvious type of transformations that we can use to produce new such
sets from a given one. Let q ∈ Z[x] and {a1, . . . , am} be a set of non-constant polynomials
in Z[x], where for some (i, j), i, j ∈ {1, . . . ,m}, i < j (we call this set S) we have aiaj + q
is a square in Z[x]. The admissible transformations are given by:

Scaling : Multiply every element ai by some 0 6= c ∈ Z to get a′i = cai; accordingly
q has to be replaced by q′ = c2q. If all coefficients of the ai are divisible by c ∈ Z

and q is divisible by c2, then we can also divide through by c to get a′i = ai/c;
accordingly q has to be replaced by q′ = q/c2.

Translation: Replace x by ax + b for some a, b ∈ Z, a 6= 0, to get a′i = ai(ax + b);
accordingly q has to be replaced by q′ = q(ax+ b).

The resulting set {a′
1
, . . . , a′m} of non-constant polynomials in Z[x] has the property that

a′ia
′

j + q′ is a square for all (i, j) ∈ S. We can also view the polynomials as elements in
Q[x] and perform the above transformations with a, b, c ∈ Q; in order to get an element
in Z[x] we just have to cancel the denominators by multiplying with the least common
multiple of them. (Below we shall use transformations over Q and normalize back to Z
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at the end if necessary.) The question arises if there are more admissible transformations
that produce new such sets and are not covered by the two operations described above.
We have the following result:

Theorem 1. Let q = cx+ d and let {a1, . . . , a5} be a set of non-constant polynomials in

Z[x] with aiaj + q a square in Z[x] for all 1 ≤ i < j ≤ 5, except for (i, j) = (4, 5), then

up to scaling and translation {a1, . . . , a5} = {x, 9x + 8, 25x + 20, 4x + 2, 16x + 14} and

q = 10x+ 9.

For the proof we shall use the notation and some facts used in the proof of Theorem
1 in [13] (see Subsection 2.1 therein). We assume that the reader is familiar with this
paper. We mention that the D(10x + 9)-quadruples {x, 9x + 8, 16x + 14, 25x + 20} and
{x, 4x+2, 9x+8, 25x+20} already appeared as special case of the two-parametric family
in [5, (11)] resp. of [4, (23)].

Proof. From [13], it follows that we may assume (by applying admissible transformations)
that our quintuple has the form

{A2x,m2

1
x+ 2m1W − u,m2

2
x+ 2m2W − u,m2

3
x+ 2m3W − u,m2

4
x+ 2m4W − u}

for some A,W, u,m1, . . . ,m4 ∈ Z, while the polynomial q is of the form A2ux + A2W 2.
Furthermore, if

(m2

ix+ 2miW − u)(m2

jx+ 2mjW − u) + (A2ux+ A2W 2)

is a square, then we have the following possibilities: either |mi − mj| = A or (2miW −
u)(2mjW − u) = u2 ± 2AWu. Following the notation from [13], we define

pi := 2miW − u, i = 1, 2, 3, 4; P := u2 − 2AWu, Q := u2 + 2AWu.

Because of the symmetry, we may assume that m1 < m2 and m3 < m4. We will consider
several cases depending on which conditions are satisfied by mi and mj for corresponding
pairs (i, j) 6= (3, 4), and also depending on which of the two numbers m1 and m3 is smaller.

1) Assume first that m1 < m3. Then we have exactly three possibilities for m2,m3,m4:
one of them is equal to m1 + A and the other two satisfy conditions involving pi’s.

1.1) Consider first the case m2 = m1 + A. Then we may assume that p1p3 = P and
p1p4 = Q. Now p2p3 6= P and p2p4 6= Q, because the mi’s are distinct integers.

There are two subcases (we may interchange the role of m3 and m4):
1.1.1) m3 = m2 + A and p2p4 = P ,
1.1.2) p2p3 = Q and p2p4 = P .

1.1.1) We have 4AWu = Q−P = p4(p1−p2) = −2AWp4, so p4 = −2u. From p1p4 = Q
we get (2m1W − u)(−2u) = u2 + 2AWu, i.e. 4m1W = u− 2AW . Inserting this in p1p3 =
p2p4, we get (−u−2AW )(−u+6AW ) = (−u+2AW )(−4u), i.e. 3u2−4uAW+12A2W 2 = 0,
which has no nonzero solutions.

1.1.2) From P +Q = p1(p3 + p4) = p2(p3 + p4), since p1 6= p2, we get p3 + p4 = 0. But
then P +Q = 2u2 = 0, which is a contradiction.

1.2) The next case is m3 = m1+A. Then p1p2 = P and p1p4 = Q. Note that p2p4 6= P,Q,
thus p2p3 = Q and m2 = m4 ± A. We distinguish cases concerning the last two signs.

1.2.1) Assume that m2 = m4 + A. From 4AWu = Q − P = p1(p4 − p2) = −2AWp1,
we get p1 = −2u. This implies 2m1W − u = −2u, which further yields 2m1W = −u.
From p1p4 = p2p3, we get 2W (m1m4 −m2m3) = (m1 +m4 −m2 −m3)u = −2uA. Since
m1m4 −m2m3 = −A(m1 +m2), we get that u = W (m1 +m2). Thus m1 +m2 = −2m1,
i.e. m2 = −3m1. From p1p2 = P , we get −2u(2m2W − u) = u2 − 2AWu, and this implies
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2AW = 5u. Hence, m1 = −A/5, m2 = 3A/5, m3 = 4A/5, m4 = −2A/5. Thus, we obtain
the set

{

A2x,
1

25
A2x− 2

5
AW − 2

5
AW,

9

25
A2x+

6

5
AW − 2

5
AW,

16

25
A2x+

8

5
AW − 2

5
AW,

4

25
A2x− 4

5
AW − 2

5
AW

}

which is an almost D(A2(2
5
AW )x + A2W 2)-quintuple. By translating 1

25
A2x to x and

substituting, α := 1

5
AW , we get the set

(1) {25x, x− 4α, 9x+ 4α, 16x+ 6α, 4x− 6α},
which is an almost D(50αx+ 25α2)-quintuple.

1.2.2) Assume now that m2 = m4 −A. We get p1 = 2u and 2m1W = 3u. The equality
p1p4 = p2p3 gives 2AW (m1 −m2) = 2W (m1m4 −m2m3) = (m1 +m4 −m2 −m3)u = 0,
which is a contradiction.

2) It remains to consider the case when m3 < m1. We consider the different possibilities
for m1 and m2.

2.1) Assume that m1 = m3+A. Then p2p3 = P (resp. Q). Further we have the following
subcases:
2.1.1) m2 = m1 + A, m4 = m2 + A and p1p4 = P (resp. Q),
2.1.2) m2 = m1 + A, m4 = m2 + A and p1p4 = Q (resp. P ),
2.1.3) p1p2 = Q (resp. P ), m4 = m2 ± A and p1p4 = P (resp. Q),
2.1.4) p1p2 = Q (resp. P ), m4 = m2 − A and m4 = m1 + A.

2.1.1) From p2p3 = p1p4, we have 4W (m2m3−m1m4) = 2(m2+m3−m1−m4)u, which
gives W (2m3 +3A) = u. Inserting this in p2p3 = u2 ± 2AWu, we get 4W 2m3(m3 +2A) =
±2AWu + 2uW (2m3 + 2A) = 2W 2(2m3 + 3A)(2m3 + 2A ± A). For the + sign we get,
2m3 + 8Am3 + 9A2 = 0, while for the − sign we get 2m2

3
+ 2Am3 + 3A2 = 0, and both

equations have no nonzero integer solutions.
2.1.2) From p2p3 − p1p4 = ∓4AWu, we get 4W 2(m2m3 −m1m4) = 2(m2 +m4 −m1 −

m4) ∓ 4Au. In the case of the − sign, this leads to AW (m1 +m2) = 0. But this means
that m1 = −A/2, m2 = A/2, m3 = −3A/2, m4 = 3A/2 and u = 0, a contradiction.

For the + sign, we obtain W (2m3 + 3A) = 2u. Inserting this in p2p3 = u2 − 2AWu
gives 4W 2m3(m3 + 2A) = 2uW (2m3 + A) = W 2(2m3 + 3A)(2m3 + A) and AW = 0, a
contradiction.

The case 2.1.3) is equivalent to the case 1.2) (by taking −A instead of A).
2.1.4) From 4AWu = Q − P = p2(p1 − p3) = p22AW , we get p2 = 2u or p2 = −2u

(with interchanged role of P and Q). This implies 2m2W = 3u or 2m2W = −u. Now
(2m1W − u)2u = u2 + 2AWu gives 2W (2m1 − A) = 3u or (2W (2m1 − A) = u. The
first case gives m2 = 2m1 − A, while the second gives m2 = −2m1 + A. We also have
m2 = m1 + 2A, which gives in the first case m1 = 3A, m2 = 5A, m3 = 2A, m4 = 4A,
u = 10AW/3, and in the second case m1 = −A/3, m2 = 5A/3, m3 = −2A/3, m4 = 4A/3,
u = −10AW/3.

Thus we get in the first case the set
{

A2x,9A2x+ 6AW − 10

3
AW, 25A2x+ 10AW − 10

3
AW, 4A2x+ 4AW − 10

3
AW,

16A2x+ 8AW − 10

3
AW

}
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which is an almost D(A2(10
3
AW )x+A2W 2)-quintuple. By translating A2x to x and sub-

stituting α := 1

3
AW , we get the set

(2) {x, 4x+ 2α, 9x+ 8α, 16x+ 14α, 25x+ 20α}
which is an almost D(10αx+ 9α2)-quintuple.

In the second case we get the set
{

A2x,
1

9
A2x− 2

3
AW +

10

3
AW,

25

9
A2x+

10

3
AW +

10

3
AW,

16

9
A2x− 8

3
AW +

10

3
AW,

4

9
A2x+

4

3
AW +

10

3
AW

}

which is an almost D(A2(−10

3
AW )x + A2W 2)-quintuple. By translating 1

9
A2x to x and

substituting α := 1

3
AW , we get the set

(3) {9x, x+ 8α, 25x+ 20α, 4x+ 14α, 16x+ 2α}
which is an almost D(−90αx+ 9α2)-quintuple.

2.2) The next possibility we have to discuss is m2 = m3+A. Then p1p3 = P , p1p2 = Q,
m4 = m1 ± A, p1p4 = P . We see that this case is equivalent to 2.1.3).

2.3) The last possibility is that p1p3 = P and p2p3 = Q. We have the following possi-
bilities for the relations between m1,m2,m4:
2.3.1) m2 = m1 + A, p1p4 = Q and p2p4 = P ,
2.3.2) m2 = m1 + A, p1p4 = Q and m4 = m2 + A.

The case 2.3.1) is identical to the case 1.1.2), while the case 2.3.2) is equivalent to the
case 1.1.1).

So far we have obtained three quintuples (1), (2) and (3) with the desired property. We
will now show that they are equivalent in the sense that they can be obtained one from
the other by admissible transformations. Take first the almost D(50αx+25α2)-quintuple
{25x, x− 4α, 9x+4α, 16x+6α, 4x− 6α}. By translating x to 5x+4α, we get the almost
D(250αx+ 225α2)-quintuple {125x+100α, 5x, 45x+40α, 80x+70α, 20x+10α}, and by
dividing all of its elements by 5 and correspondingly q by 25, we get exactly the set (2).
Take now the almost D(−90αx+9α2)-quintuple {9x, x+8α, 25x+20α, 4x+14α, 16x+2α}.
By translating x to −9x − 8α, we get the almost D(810αx + 729α2)-quintuple {−81x −
72α,−9xα,−225x−180α,−36x−18α,−144x−126α}, and by dividing all of its elements
by −9 and correspondingly q by 81, we get exactly the set (2). Furthermore, by dividing
the elements of (2) by α, we get that all quintuples with the desired property can be
obtained from the almost D(10x+ 9)-quintuple {x, 9x+ 8, 25x+ 20, 4x+ 2, 16x+ 14} by
the admissible transformations. This proves the assertion. �

3. Twists of an elliptic curve

In the previous section we proved that for a rational number x the sets {x, 4x+2, 9x+
8, 25x + 20} and {x, 9x + 8, 16x + 14, 25x + 20} are rational D(10x + 9)-quadruples.
Therefore, the set

{x, 4x+ 2, 9x+ 8, 16x+ 14, 25x+ 20}
is a rational D(10x+ 9)-quintuple if

(4) (4x+ 2)(16x+ 14) + 10x+ 9 = y2
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for a y ∈ Q. Inserting y = 8x+ t in (4), we obtain

x =
t2 − 37

2(49− 8t)
.

Thus, we have proved:

Theorem 2. The set

(5) {t2 − 37, 4t2 − 32t+ 48, 9t2 − 128t+ 451, 16t2 − 224t+ 780, 25t2 − 320t+ 1035}
is a D(4(8− t)(5t− 32)(8t− 49))-quintuple.

Let q be a nonzero rational number. We are interested in the question whether on using
Theorem 2 we can get a rational D(q)-quintuple. If there exist rationals s 6= 0 and t such
that

(6) 4(8− t)(5t− 32)(8t− 49) = qs2,

then by dividing all elements of (5) by s, we exactly get a D(q)-quintuple. The equation
(6) with q = 1 defines an elliptic curve E over Q. Therefore, we are interested in the
question whether these curves have points with nonzero s-coordinate, which leads us to
consider curves with positive rank in the family of elliptic curves (for varying q) given by
(6). In fact, this is the family of twists of the elliptic curve given by

s2 = 4(8− t)(5t− 32)(8t− 49).

By the substitution t = −x/40 + 49/8, s = y, we get an equation of the curve E in short
Weierstrass form

(7) E : y2 = x(x+ 11)(x+ 75) = x3 + 86x2 + 825x.

The curve E has discriminant D = 2163254112 and conductor C = 330 = 2 · 3 · 5 · 11.
Its minimal model is given by y2 + xy = x3 + x2 − 102x + 324. Furthermore, its torsion
group is isomorphic to Z/2Z × Z/2Z (the only nontrivial torsion points are those with
y-coordinate equal 0) and the rank is equal to 1 with the generator (x, y) = (−15, 60).

The question now is which of the q-twists of the curve E have positive rank. As we
have already said, we may assume that q is a square-free integer. We consider the family
of elliptic curves Eq given by the equation

(8) Eq : qy2 = x3 + 86x2 + 825x.

If q is of the form

(9) q = uv(u2 + 86uv + 825v2),

for integers u, v, then there is a point (u/v, 1/v2) of infinite order on the curve Eq. This
gives us infinitely many values of q for which the rank is positive, and thus for which there
exist infinitely many rational D(q)-quintuples. Indeed, for fixed ε > 0 and sufficiently large
N , there are at least N1/2−ε square-free numbers q, |q| ≤ N , of the form (9) (see e.g. [16]).

Assuming the Parity Conjecture for all twists of E, we can give a precise description
of those q’s for which the rank of its q-twist is odd (and therefore positive). We remind
the reader that the Parity Conjecture (for E) says that the rank of the Mordell-Weil
group of E is equal to the order of vanishing of the associated L-function L(E, s) at
s = 1 modulo 2. This statement is of course implied by the Birch and Swinerton-Dyer
Conjecture. It is known that if the Tate-Shafarevich group X(E/Q) of E is finite, then
the Parity Conjecture holds true for E (cf. [18]). The Parity Conjeture implies that for
a square-free integer q relative prime to twice the conductor C of E, the (Mordell-Weil)
ranks of E and Eq are equal modulo 2 if and only if χq(−C) = 1, where χq is the quadratic
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Dirichlet character associated to Q(
√
q) (cf. [16, p. 2]). Finally, we mention the Goldfeld

Conjecture that says that on taking the average over the ranks of the twists of E we
get 1/2; together with the Parity Conjecture this implies that the number of square-free
integers q with |q| ≤ N such that Eq has rank 0 (resp. 1) is 6N/π2 as N → ∞. For us it
would be sufficient to get hold on those twists for which the rank is positive; the Parity
Conjecture implies that the number of these square-free q’s with |q| ≤ N is ≥ 6N/π2 (see
[19]). We have the following theorem:

Theorem 3. For infinitely many square-free numbers q there are infinitely many rational

D(q)-quintuples. Assuming the Parity Conjecture for all twists of the elliptic curve E
given by (7) we get that for all square-free q in at least 497 residue classes (mod 1320)
there are infinitely many rational D(q)-quintuples.

Proof. The first part of the statement has already been settled above. Let us assume
that the Parity Conjecture is true for all twists of E. If gcd(q, 330) = 1, then the Parity
Conjecture predicts that the rank of the curve E and the rank of its q-twist have the same
parity if and only if χq(−330) = 1, where χq is the quadratic Dirichlet character attached
to the field Q(

√
q) (see e.g. [16]). In particular, if q ≡ 1 (mod 4), then

χq(−330) =

(−330

|q|

)

,

where ( ·
·
) denotes the Jacobi symbol. It follows for all q satisfying

gcd(q, 330) = 1, q ≡ 1 (mod 4) and

(−330

|q|

)

= 1,

that the q-twist has odd rank. We find that exactly 80 residue classes (mod 330 ·4 = 1320)
satisfy these conditions. For q ≡ 3 (mod 4), we consider the q-twist as the (−q)-twist of
the (−1)-twist of E given by (7). The (−1)-twist has conductor 24 · 3 · 5 · 11 and root
number 1 (so that the rank is conjecturally even; but actually one can check that the rank
is equal to 0). We therefore get that for all q satisfying

gcd(q, 330) = 1, q ≡ 3 (mod 4) and

(−165

|q|

)

= −1,

the rank of the q-twist is odd. This gives us 40 residue classes (mod 165 · 4), or 80 classes
(mod 1320). If gcd(q, 330) = g > 1 we proceed similarly. Let q = gh. Then we consider
the q-twist as the h-twist of the g-twist of E (or the (−h)-twist of the (−g)-twist).
For g ∈ {±2,±3,±5,±11,±6,±10,±15,±22,±33,±30, ±55, ±66,±110,±165,±330}
we compute the conductor and the root number of the g-twist. In each case we get
that the conductor is of the form 2k|g|N for an integer k (actually, k ∈ {0, 3, 4}).
This implies that the conditions we get for q can in all cases be written in terms of
residue classes (mod 1320). All together, we get that exactly 497 residue classes (mod
1320) (q ≡ i (mod 1320), i = 1, 7, 9, 10, 11, 18, 21, 22, 23, 30, . . . , 1315, 1319) satisfy
the condition that the rank of the q-twist is odd (we consider only those classes not
divisible by 4, since we are interested in square-free numbers). This proves the theorem. �

As mentioned above, it is sufficient for us to find q’s such that the twist Eq has rank
≥ 1. It is worth mentioning that there are indeed curves with rank > 1, e.g. E−21 has
rank 2, E−551 has rank 3, E5217 has rank 4, E19712449 has rank 5, and E18427939089 has rank
6.
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4. Some examples

The smallest positive integer q for which the above construction gives (infinitely many)
D(q)-quintuples is q = 7. We have the twist 7y2 = x(x + 11)(x + 75) with rank 1 and
generator (x, y) = (−25, 50) of the Mordell-Weil group. It induces the point (t, s) =
(27/4, 5/2) on (6). From Theorem 2 we obtain the rational D(7)-quintuple

{

137

40
,
57

10
,−47

40
,−6

5
,
45

8

}

.

By multiplying all elements of this quintuple by 40, we get an integer D(11200)-quintuple.
The greatest negative integer with the same property is q = −2. The (−2)-twist has rank

1 and the generator of the Mordell-Weil group is (x, y) = (−297/2, 3465/4). It induces the
point (t, s) = (787/80, 693/16) on (6). From Theorem 2 we obtain the following rational
D(−2)-quintuple

{

11593

8400
,
5833

2100
,
4059

2800
,
1513

525
,
2377

336

}

.

By multiplying all elements of this quintuple by 8400, we get an integer D(−141120000)-
quintuple.

We mention that the smallest positive integer n for which the construction from The-
orem 2 gives an integer D(n)-quintuple is n = 1309 in which case we get the D(1309)-
quintuple {2, 30, 106, 186, 290}, while the greatest negative integer with the same property
is n = −299 by means of the D(−299)-quintuple {14, 22, 30, 42, 90}. Going further in this
direction one may ask what the least positive integer n1 and what the greatest negative
integer n2 is, for which there exists a Diophantine quintuple with the property D(ni),
i = 1, 2. It is known that n1 ≤ 256 and n2 ≥ −255, since the sets {1, 33, 105, 320, 18240}
and {5, 21, 64, 285, 6720} have the property D(256), and the set {8, 32, 77, 203, 528} has
the property D(−255) (see [6, 7]). We also mention the famous conjecture, motivated by
the result of Baker and Davenport [2] on the nonextendibility of Fermat’s example of a
D(1)-quadruple given by {1, 3, 8, 120}, that there does not exist a D(1)-quintuple. (In [10]
it has been proved that there are only finitely many D(1)-quintuples and that there is no
D(1)-sextuples.) In [12], it has been proved that there does not exist a D(−1)-quintuple.
So, in above terminology, we know that n2 ≤ −3.

Let us mention that several rational D(q)-sextuples are known (see [15, 11]), but in all
known examples q is a perfect square.
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