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Abstract. In this paper we study multi-dimensional words generated
by fixed points of substitutions by projecting the integer points on the
corresponding broken halfline. We show for a large class of substitutions
that the resulting word is the restriction of a linear function mod 1 and
that it can be decided whether the resulting word is space filling or
not. The proof uses continued lattices and the abstract number system
associated with the substitution.
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1. Introduction

In 1982 Rauzy [32] introduced the Rauzy fractal as a closure of an
infinite sequence of points. He proved that the three parts composing it
have disjoint interiors with area 1 and that it forms a tile of R2 with very
nice properties. Since then many researchers have studied the correspond-
ing structures for other substitutions, with quite diverse outcomes (cf.
[2, 5, 37, 41, 15, 4, 17, 39, 23, 44]), but a general rule for deciding when a sub-
stitution leads to simple tiling of a space is still wanted, especially, because
these structures turned out to be useful in the mathematical theory of qua-
sicrystals (for details see [38, 7, 22, 9]). The authors want to reveal some of
the underlying principles and thereby to pave the way to a satisfying answer.

The present paper is a generalization of some phenomena which were
observed in the special case of the Tribonacci substitution σ : {0, 1, 2} →
{0, 1, 2} given by σ(0) = 01, σ(1) = 02, σ(2) = 0 by Rosema and Tijde-
man [35]. The repeated application of the substitution σ with as start
value 0 and concatenation as operation yields a sequence of finite words:
u(0) = 0, u(1) = 01, u(2) = 0102, u(3) = 0102010, u(4) = 0102010010201, . . . .
The limit word U := 010201001020101020100102010201001020101 . . . is
called the fixed point of σ. An important role in the analysis is played
by the incidence matrix Mσ of σ, the row vectors of which are the
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incidence vectors of σ(0), σ(1), σ(2), respectively, hence in the present
case (1, 1, 0), (1, 0, 1) and (1, 0, 0). Its characteristic polynomial equals
x3 − x2 − x − 1. It has one real root β with modulus greater than one
and two complex roots with modulus smaller than 1. The eigenvectors
corresponding to the eigenvalue β of Mσ equal R(β2, β, 1). From the

word U a sequence of points in Z3 is constructed by putting P0 = ~0
and Pm+1 = Pm + ~ei for m = 0, 1, 2, . . . if and only if the letter of U
at the position m equals i where ~ei denotes the i-th unit vector. So
P1 = (1, 0, 0), P2 = (1, 1, 0), P3 = (2, 1, 0), P4 = (2, 1, 1), P5 = (3, 1, 1), . . . .
These points approximate the line R(β2, β, 1) very well. If the points
Pm (m = 0, 1, . . . ) are projected parallel to this line on a plane, then
the famous Rauzy fractal is formed [32]. Instead Rosema and Tijdeman

projected the points Pm generated by each word u(n) parallel to the line
through the starting point P0 and the end point Pm, where m is equal to
the length of u(n), on the (y, z)-plane. This leads to a sequence of structures
which have the Rauzy fractal as a limit. However, by applying a suitable
linear transformation depending on n to the n-th structure, an increasing
sequence of two-dimensional words (w(n))n≥0 was obtained. It was shown
that the derived limit word has the full lattice Z2 as domain (so it was
space-filling) (cf. [35, Theorem 4.7]). Moreover, the normalized value of the
word at some lattice point is determined by a linear function modulo 1
(cf. [35, Theorem 4.7]) and the development of the projected words is fully
reflected by some two-dimensional representation of the Tribonacci number
system (cf. [35, Lemma 4.6]).

The present paper deals with an arbitrary given substitution σ mapping
{0, 1, . . . , k} to finite words in these letters. We assume that σ has an invari-
ant word starting with 0. In Section 2 we define the incidence matrix Mσ,
we derive recurrence relations for its entries and show that the growth order
of these entries is determined by the eigenvalues with largest modulus. We
make the assumption that Mσ has a dominant eigenvalue β and that all the
components of the corresponding eigenvector are positive. Finally, we define
the corresponding broken halfline in Rk+1. The results in this section are
based on the classical Perron-Frobenius theorem.

In Section 3 we define the projection of the integer points on the broken
halfline to some hyperplane. We leave the subsequent linear transformation
free, but mention some natural choices. One of them, called canonical, leads
to simplified formulas. We make the further assumption that the incidence
matrix Mσ is unimodular. Theorems 2 and 3 describe the structure of the
projected word w(n). We define the normalized word ŵ(n) and show in The-
orem 4 that the limit word Ŵ has a linear structure mod 1. The method in
this section is taken from Berthé and Tijdeman [10].

In Section 4 we define the automaton, the language and the number sys-
tem associated to σ. We make a further assumption that β > 1. We show that
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the corresponding eigenvector plays a fundamental role in the description of
the number system. We present an algorithm to compute the representation
of an arbitrary number from [0, 1) in this number system. Theorem 4 shows
that we have a bijection between the half-open interval [0, 1) and the infi-
nite words in the associated language. Theorem 5 gives a certain finiteness
criterion, provided that β is a Pisot number and states on the other hand
that if all elements in Z[β−1] ∩ [0, 1) have a finite expansion, then β is a
Pisot number or a Salem number. It is remarkable that this criterion (in
the Pisot case) is finite and can be checked effectively. In our analysis of
associated number systems we rely on results of Frougny and Solomyak [20]
and Akiyama [1].

The results from Sections 2, 3 and 4 are combined in Section 5. Theorem
6 describes the relation between the word w(n) and the number system as-
sociated with σ. It turns out that w(n) consists exactly of the words in the
associated language of length at most n. Theorem 7 gives a criterion for the
limit word Ŵ to be space filling. As before the criterion is decidable if β is
a Pisot number. If Ŵ is space filling, then the dimension of the space filling
word Ŵ equals degβ − 1.

In the final Section 6, we give five examples. Example 1 concerns a sub-
stitution on three letters leading to a two-dimensional space filling word.
Example 2 deals with the flipped Tribonacci substitution which yields a
word which is not space filling. Example 3 treats a substitution on three
letters with a dominant root of degree 2 and a resulting space filling word
of dimension 1. Example 4 shows how a substitution on five letters with a
dominant root of degree 3 and two roots of modulus 1 generates a space fill-
ing word of dimension 2. Finally, Example 5 is concerned with a substitution
on four letters with a dominant Pisot root of degree 2 and two other roots,
one outside and one inside the unit circle, that generates a one-dimensional
word which is not space filling.

Finally we note that some of the made assumptions are just for conve-
nience, but that this is not the case for the assumptions that Mσ is uni-
modular and has a dominant root β > 1 and that all components of the
corresponding eigenvector are positive.

2. Limit word and discretisation of the hyperplane

Let Σ be a finite set. By Σ∗ we denote the set of finite words over the
alphabet Σ including the empty word ε. A substitution is a map σ : Σ →
Σ∗\{ε}. This map can be extended to a map σ : Σ∗ → Σ∗ by letting σ(ε) = ε
and σ(ws) = σ(w)σ(s) for w ∈ Σ∗, s ∈ Σ where as usual the operation is
the concatenation of words. (With this operation the set Σ∗ is a free monoid
with identity ε generated by Σ.) We denote by |w| the length of the word
w ∈ Σ∗, i.e. |w| = n if w ∈ Σn. Moreover, we set |w|s for w ∈ Σ∗, s ∈ Σ to
be the number of occurrences of letter s in the word w. Hence

∑

s∈Σ |w|s =
|w|. The column vector ~w whose components are the quantities |w|s for
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s ∈ Σ is called the incidence vector of the word w. In the paper the vectors
are defined as column vectors and row vectors are presented as transposed
vectors. Transposition is denoted by a left superscript t.

Let N denote the non-negative integers and Σω the set of right-infinite
words over the alphabet Σ, i.e. the set of sequences of letters from Σ indexed
by non-negative integers. We equip Σω with the usual discrete product met-
ric: for V, W ∈ Σω we set d(V, W ) = 2−i, where i is the smallest integer
such that Vi 6= Wi (V = (Vn)n∈N, W = (Wn)n∈N) if such an index exists
and i = ∞ if V = W . Convergence of sequences is considered with respect
to this metric. Observe that any finite word w ∈ Σ∗ can be viewed as an
infinite word wζω ∈ (Σ ∪ {ζ})ω for some ζ /∈ Σ. So a sequence (w(n))n≥0 of
finite words converges to an infinite word W if and only if for every l ∈ N

there exists an Nl ∈ N such that the first l letters of W and w(n) coincide
for every n ≥ Nl. We denote by (w)i the letter at position i in the finite or
infinite word w.

We can extend σ to W = (Wn)n∈N in Σω by putting σ(W ) = (σ(Wn))n∈N

and applying infinite concatenation. Observe that if (w(n))n≥0 converges

to W ∈ Σω then (σ(w(n)))n≥0 converges to σ(W ). We say that a finite or
infinite word w is a fixed point of the substitution σ if σ(w) = w.

In the sequel we will always assume Σ = {0, 1, . . . , k} and consider the

sequence (u(n))n≥0 given by

u(n) = σn(0) (n = 0, 1, . . . ).

Suppose the sequence u = (u(n))n≥0 converges to a limit word U = (Un)n∈N

which is a fixed point of the substitution σ. By relabeling the alphabet Σ
we may assume that U0 = 0. Since by definition there exists a N1 such
that U0 = (u(n))0 for all n ≥ N1, it follows that (σ((u(n))0))0 = (u(n+1))0.
Therefore, we have that

(A1) σ(0) = 0v, v ∈ Σ∗.

For the sake of simplicity we will always assume that the substitution σ
satisfies (A1). Therefore U := limn→∞ u(n) is a well-defined infinite word
U0U1U2 · · · with U0 = 0.

Let

~un = t(|σn(0)|0, . . . , |σn(0)|k)

be the so-called incidence vector of u(n) = σn(0) and

~vn = t(|σn(0)|, . . . , |σn(k)|).

Of special interest is the first coordinate of ~vn, which generates the sequence
of lengths (|u(n)|)n∈N of the sequence (u(n))n≥0. Put s(n) = |un| for n ∈ N.

We will discuss the convergence of the vectors ~un/|u(n)|. Define the incidence
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matrix Mσ of the substitution σ by

Mσ =

(

|σ(i)|j
)

i=0,...,k;j=0,...,k

∈ N(k+1)×(k+1).

The incidence matrix contains the global information (the numbers of each
letter) of the substitution σ, but not the local information (the precise or-
der). Let xk+1 − gkx

k − · · · − g0 be the characteristic equation of Mσ. Then
Mk+1

σ = gkM
k
σ + · · · + g0M

0
σ where gk, . . . , g0 are rational integers.

It is easy to see that both sequences ~un and ~vn satisfy a linear recurrence
relation where Mσ is involved. We have

(1) t~unMσ = t~un+1 and Mσ~vn = ~vn+1,

respectively. Hence

~un+k+1 = gk~un+k + · · · + g0~un

and similarly for ~vn. Therefore the components of the vectors ~un, ~vn satisfy
the linear recurrence relation. In particular, s(n+k+1) = gks

(n+k) + · · · +

g0s
(n) (n = 0, 1, . . . ). Denoting by ~e

(k+1)
0 , . . . , ~e

(k+1)
k the unit column vectors

in Rk+1, it follows by induction on n that tMn
σ~e

(k+1)
0 is the incidence vector

of u(n), hence s(n) is the sum of the entries in the row with index 0 of Mn
σ .

More generally we have

Lemma 1. Let n ≥ 0 and i ∈ {0, 1, . . . , k}. Then the i-th row vector of Mn
σ

equals

(|σn(i)|0, |σn(i)|1, . . . , |σn(i)|k)
and the vector of the row sums of Mn

σ equals ~vn.

Proof. The assertion holds by definition for n = 0. Suppose the statement
holds for n. Then the i-th row vector of Mn+1

σ equals

t~e
(k+1)
i Mn+1

σ = t~e
(k+1)
i Mn

σ Mσ =
k∑

j=0

|σn(i) |j t~e
(k+1)
j Mσ

=





k∑

j=0

|σn(i)|j |σ(j)|0, . . . ,
k∑

j=0

|σn(i)|j |σ(j)|k





= (|σn+1(i)|0, . . . , |σn+1(i)|k).

A similar argument proves the second part of the lemma. ¤

Furthermore, we have the following lemma (where as usual we use the
notation f(x) = o(g(x)) for f(x)/g(x) → 0 if x → ∞).
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Lemma 2. There exist an algebraic integer β ≥ 1, a p ∈ N and vectors
~Pj , ~Qj (j = 0, 1, . . . , p − 1) with entries from Q

(
βξp

)
[x] such that

~un =

p−1
∑

j=0

~Pj(n)
(
ξj
pβ

)n
+ o (βn) , ~vn =

p−1
∑

j=0

~Qj(n)
(
ξj
pβ

)n
+ o (βn) ,

where ξp denotes a primitive p-th root of unity.

Proof. The result follows immediately from the Perron-Frobenius Theorem
[8, Theorem 1.4.4] if the incidence matrix Mσ is irreducible (cf. [8, p. 2]).
If Mσ is not irreducible, we can write it (after a relabeling of the alphabet
not involving 0) as an upper diagonal block matrix. We denote the square
blocks along the diagonal by M1, . . . , Mr with M1, . . . , Mr irreducible. Since
the characteristic polynomial of such a block matrix is given by the product
of the characteristic polynomials of the Mk, it suffices to consider them.
Observe that since all the matrices Mk have non-negative integral entries it
follows that the characteristic roots are algebraic integers and therefore at
least one of the characteristic roots is ≥ 1. Now by the Perron-Frobenius
Theorem for irreducible non-negative matrices [8, Theorem 1.4.4] it follows
that all the characteristic roots of maximum modulus of the matrices Mk

are given by ξh
pk

βk (h = 0, . . . , pk − 1) for some pk ∈ N and real algebraic
integers βk ≥ 1. By the theory on recurrences, ~un and ~vn can be expressed
as an exponential polynomial with the roots of the characteristic polynomial
as base variables. Put β = max{βk : k = 1, . . . , r} and p =

∏

|βk|=β pk.

Then all the terms in the expressions for ~un and ~vn are absorbed in the
error term o(βn) except for the base values of the form ξh

p β. The fact that

the components of the coefficient-vectors ~Pj , ~Qj are in the field generated
by βξp over Q follows by considering the generating functions of the
components, which leads to rational functions with integer coefficients since
the vectors ~un and ~vn have integral components, and by using the partial
fractal decomposition afterwards. ¤

Observe that the result recovers part of a result of Lind [24, 25] who
characterized for which matrices with entries in N the spectral radii are
Perron numbers. (A Perron number is a real algebraic integer which is
larger than all its conjugates.)

From the lemma it follows that if we split the sequence (u(n))n≥0 according
to the arithmetic progressions n = mp + j with j = 0, . . . , p − 1, then the
incidence matrix Mσ for each progression has a dominant root βp ≥ 1.
Moreover, there exists a monic polynomial P (x) ∈ Q(β)[x] such that the
limits

(2) lim
n→∞

|σnp+i(j)|
P (np + i)βnp+i

=: aj(i)
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exist for all j = 0, . . . , k; i = 0, . . . , p − 1. Furthermore, we get that

lim
n→∞

~unp+i

|unp+i|
=: ~b(i)

exist for all i = 0, . . . , p− 1. Observe that this need not hold if we replace p
with 1, e.g. it does not for a substitution with incidence matrix









1 1 0 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0









,

which has the characteristic equation

β5 − β4 − β3 + β2 − β + 1 = (β − 1)(β2 − ρ2)(β2 − ρ−2) = 0

where ρ = (1 +
√

5)/2.
We simplify the formulas by studying the arithmetic progressions with

difference p separately. In the sequel we will assume that

(A2) Mσ has a dominant eigenvalue β,

so p = 1. We denote aj(0),~b(0) by aj ,~b, respectively.

Fig. 1: Broken halfline segment associated to u(4)= 0120001010120

for the flipped Tribonacci substitution σ(0) = 01, σ(1) = 20,

σ(2) = 0.



8 CLEMENS FUCHS AND ROBERT TIJDEMAN

It is clear that the vector ~a := t(a0, . . . , ak) is an eigenvector of Mσ and

the vector ~b is an eigenvector of tMσ, both to the eigenvalue β. In particular

the sequence u(n)/|u(n)| of normed incidence vectors converges to ~b.
We remove all letters from Σ which do not appear in the limit word U ,

since they do not play a role in the further investigations. (This will lead
to a trim automaton associated to σ in Section 4.) Moreover, we remove all
letters j for which aj = 0. Observe that such letters can appear infinitely
often in U , as e.g. the letter 2 in σ(0) = 012, σ(1) = 111, σ(2) = 2. We
assume that

(A3) aj > 0 for all j = 0, . . . , k.

This implies that all sequences (|σn(j)|)n≥0 have the same growth order.

The limit word U of the sequence (u(n))n≥0 = (σn(0))n≥0 generates a

broken halfline in Rk+1 in the following way: we start in~0 and for n = 0, 1, . . .
go 1 in the direction of the xi-axis when Un = i. (See Fig. 1.) It follows from

the convergence of the incidence vectors of u(n) that the broken halfline

approximates the halfline R≥0
~b.

We will study the projection of the integer points on the broken halfline to

some hyperplane not containing R~b. (Since we ignore linear transformations,
we are free in our choice.) The integer points Pm for m ∈ N on this line are
given by

P0 = ~0, Pm+1 = Pm + ~e
(k+1)
Um

,

We project each integer point parallel to the halfline R≥0
~b to the hyperplane

and want to understand the structure of the projections. In general this
problem is hard, because the projections form fractals (e.g. the Rauzy-fractal
[32] in case we start with the Tribonacci substitution). As in [35] in the
Tribonacci case we first investigate the local behaviour by considering for
every n ∈ N the projections along the broken line segment through ~0 and
Pm = ~un where m = s(n). In the next section we will show that if we use a
suitable transformation after applying the projection, then the images lie in
the lattice Zk.

3. Continued lattices

We start by defining a linear mapping Φn which projects the integer points
on the broken halfline segment associated to u(n) to some hyperplane not

containing the incidence vector ~un. Recall that ~un = tMn
σ~e

(k+1)
0 by Lemma

1 (see the shaded line in Fig. 1). Hence

(3) Φn

(
Ps(n)

)
= Φn

(
tMn

σ~e
(k+1)
0

)

:= ~0.

Let ~c1, . . .~ck be such that the vectors tMk
σ~e

(k+1)
0 ,~c1, . . . ,~ck form a basis of

the lattice Zk+1. Then we define, for n ≥ k,

(4) Φn

(
tMn−k

σ ~ci

)

:= ~e
(k)
i (i = 1, . . . , k),
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where ~e
(k)
i denotes the i-th k-dimensional unit vector.

By assuming that

(A4) Mσ is unimodular,

we secure that tMn
σ~e

(k+1)
0 , tMn−k

σ ~c1, . . . ,
tMn−k

σ ~ck form a basis of Zk+1 for
every n ∈ N. We will hold on this assumption for the rest of the paper.

6
8

10 1 5
7

9 0 4
11 2

12 3

Fig. 2: Result of the projection of the integer points on the

broken halfline segment along u(4) to the (x1, x2)-plane for the

flipped Tribonacci substitution σ(0) = 01, σ(1) = 20, σ(2) = 0

on the left-hand side and the image in Z2 after applying Φ4

with ~c1 = ~u0 = t(1, 0, 0),~c2 = ~u1 = t(1, 1, 0) on the right-hand side.

Since we have determined the images of Φn on a basis of the lattice Zk+1

and Φn is linear, it is defined everywhere and the definition for Φn makes
sense for all n ≥ 0. For short, we will call Φn itself a projection.

We may take the vectors ~ci from the points of the broken halfline corre-

sponding to u(k). In fact we can take ~c1 = ~e
(k+1)
0 , ~c2 the first point on the

broken halfline, which corresponds to the place where the first letter differ-
ent from 0 in u(k) appears, and so forth. This is clearly valid as all k + 1
letters have to appear in u(k), since we have removed all letters which do
not appear in the limit word from our alphabet. So it is possible to choose
the vectors ~ci such that they are linearly independent over Z. The image of
the broken halfline segment associated with u(n) is now a subset of Zk (cf.
Fig. 2).

Observe that in general it is not possible to take

~ci = tM i−1
σ ~e

(k+1)
0 = ~ui−1
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for i = 1, . . . , k, even if Mσ is unimodular. E.g. the substitution σ(0) = 0112,
σ(1) = 1, σ(2) = 2 has a unimodular incidence matrix, but no three con-
secutive vectors in the sequence ~un are a basis of Z3.

10 8 6
1

11 9 7 5
2 0

4
12

3

Fig. 3: Result of the projection of the broken halfline segment

associated to u(4) in the canonical case for the flipped Tribonacci

substitution σ(0) = 01, σ(1) = 20, σ(2) = 0.

Another useful choice is

(5) ~ci = tMk
σ~e

(k+1)
i (i = 0, 1, . . . , k).

In this case we can explicitly describe the corresponding projection which
we will call the canonical projection Φ∗

n. For ~x ∈ Zk+1 we have

(6) Φ∗
n(~x) := Π(tM−n

σ ~x),

where Π is the projection along ~e
(k+1)
0 and therefore means deletion of the

zeroth entry. When we use this special basis, we say that we are in the
canonical case. We remark that the map Φ∗

n can be seen as a result of
changing the order of projection and transformation: we can as well first
apply a linear transformation and then project; as the transformation we
choose left multiplication by tM−n

σ and we project along the unit vector

~e
(k+1)
0 .

We define

(7) ~a
(n)
i := Φn

(

~e
(k+1)
i

)
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for i = 0, 1, . . . , k and call them transition vectors corresponding to u(n).
Observe that these vectors tell which step we have to make in Zk to get to
the next projected point.

In the canonical case we have

(8) ~a
(n)
i = Φ∗

n

(

~e
(k+1)
i

)

= Π
(

tM−n
σ ~e

(k+1)
i

)

and therefore the transition vectors in this case are obtained as the row
vectors of M−n

σ after deletion of their zeroth entries. In general we have the
following formula to calculate them.

Lemma 3. We have
(

~a
(n+1)
0 , . . . ,~a

(n+1)
k

)

=
(

~a
(n)
0 , . . . ,~a

(n)
k

)
tM−1

σ

for all n ≥ 0.

Proof. By the substitution σ each jump a
(n)
q in w(n) is replaced by a series

of jumps a
(n+1)
(σ(q))i

according to the word σ(q). Therefore we get

~a(n)
q =

|σ(q)|−1
∑

i=0

~a
(n+1)
(σ(q))i

= ~a
(n+1)
0 (σ(q))0 +~a

(n+1)
1 (σ(q))1 + · · ·+~a

(n+1)
k (σ(q))k.

Thus, the recurrence follows from Lemma 1. ¤

Let P1, . . . , Pm with m = s(n) be the integer points on the broken halfline
segment. We will define a new k-dimensional word using the projections of
these points.

A k-dimensional word is a map from a subset of Zk to some alphabet. If
we have a sequence (w(n))n≥0 of k-dimensional words, then we say that this
sequence converges on A to a k-dimensional word W if for every ~x ∈ A there
exists an integer N such that w(n)(~x) = W (~x) for all n ≥ N . Observe, that
words used up to now are 1-dimensional words defined on {0, 1, . . . , n − 1}
if the word is of length n, and on the non-negative integers if it is infinite.

Now, we define w(n) by setting its value at position Φn(Pi) equal to i for

i = 0, . . . , m − 1. Hence w(n) is a k-dimensional word with letters from N,
i.e.

w(n) : Φn(An) −→ N

Φn(Pi) 7−→ i

for i = 0, . . . , s(n) − 1 where An consists of the integer points on the broken
line segment from ~0 to ~un. Put L =

∑

q∈Σ{|σ(q)|−1}. We have the following

Theorem 1. The sequence of words w = (w(n))n∈N is well-defined.

The domain of w(n+1) is contained in the union of the domain of w(n) and
at most L translates of the domain of w(n).
Moreover, in the canonical case the projections of Pm in w(n) will be the
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projections of tMσPm in w(n+1) for m = 0, 1, . . . , s(n)−1 and σn+1(0)−σn(0)
new points are added.

Proof. Suppose Φn(Pi) = Φn(Pj). By the linearity of Φn it follows that

Pi −Pj ∈ R~un. Recall that ~u0 = ~e
(k+1)
0 and Mσ is unimodular. By induction

on n it follows from (1) that the entries of ~un are relatively prime. Since Pi

and Pj have integral coordinates, we obtain that Pi − Pj ∈ Z~un. But this

implies i = j, since i, j ∈ {0, 1, . . . , s(n) − 1}, whence |Pi − Pj | < |~un|.
If ~x = (x1, . . . , xk) ∈ Zk is in the domain of w(n), then, by (4),

~x =
k∑

i=1

xiΦn(tMn−k~ci).

When applying σ to the word u(n) to obtain u(n+1), we apply tMσ to the
broken line segment corresponding to u(n) to obtain the broken line segment
corresponding to u(n+1) and therefore Φn+1

tMσ to get the projections. If P
is the integer point on the broken halfline corresponding to u(n) which is
projected to ~x, then

P ∈
k∑

i=1

xi
tMn−k

σ ~ci + R tMn
σ~e

(k+1)
0 .

Applying tMσ on the left we obtain

tMσP ∈
k∑

i=1

xi
tMn+1−k

σ ~ci + R tMn+1
σ ~e

(k+1)
0 .

If we apply Φn+1, we get that the image of ~x equals

k∑

i=1

xiΦn+1(
tMn+1−k

σ ~ci).

Thus the vector ~x is also in the domain of w(n+1). Suppose that the broken

halfline leaves ~x by a step ~e
(k+1)
q . Then the subsequent integer points on the

broken halfline associated with u(n+1) are obtained by following the letters
of the word σ(q) and thus by the projections

~ysq = ~x +

sq∑

i=1

~a
(n+1)
(σ(q))i

,

where sq ∈ {1, . . . , |σ(q)| − 1}. It follows that the projections are contained

in the union of the domain of w(n) and sq translates of it. This argument is
valid for q = 0, 1, . . . , k. Thus we have proved the second assertion.

Now assume that we are in the canonical case. Since Pm =
t(|u0 · · ·um−1|0, . . . , |u0 · · ·um−1|k) and by σ each letter j is replaced with
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|σ(j)|0 zeros, |σ(j)|1 ones, and so forth up to |σ(j)|k letters k, Pm is mapped
to Pl where

Pl =
k∑

j=0

|u0 · · ·um−1|j t(|σ(j)|0, . . . , |σ(j)|k).

Observe that

tMσPm =
k∑

j=0

|u0 · · ·um−1|j t(|σ(j)|0, . . . , |σ(j)|k) = Pl.

Hence Φ∗
n(Pm) = Π(tM−n

σ Pm) = Π(tM
−(n+1)
σ Pl) = Φ∗

n+1(Pl). Consequently,

when going from σn(0) to σn+1(0), the projections of the transformations

of P0, . . . , Ps(n) remain in the domain of w(n) and σn+1(0) − σn(0) new
projected points are added. This proves the third statement. ¤

Observe that the projected points ~0, Φn(P1), . . . ,Φn(Pm−1), Φn(Pm) = ~0

with m = s(n), which make up the domain of w(n), set up a roundwalk (see
[10] for a more general setting of this topic), that is a sequence of vectors
from Zk with starting point equal to endpoint and with the property that

Φn(Pi+1) − Φn(Pi) ∈ {~a(n)
0 , . . . ,~a

(n)
k } for i = 0, . . . , m − 1. Moreover, the

coding of this roundwalk, that is the finite word w0 · · ·wm over the alphabet

{0, 1, . . . , k} defined by wi = j if Φn(Pi+1)−Φn(Pi) = ~a
(n)
j for 0 ≤ i ≤ m−1,

is exactly the word u(n). Clearly, given the transition vectors, the roundwalk
is perfectly determined by its coding.

We define, for i = 1, . . . , k,

(9) b
(n)
i := t~ci~vn−k =

k∑

j=0

ci,j |σn−k(j)|

where ~ci = t(ci,0, . . . , ci,k) are the vectors in the definition of Φn. Observe

that if we divide through by s(n) = |u(n)| and let n go to infinity, then, by
(2) and the convention after (A2),

(10)
b
(n)
i

s(n)
=

k∑

j=0

ci,j

|σn−k(j)|
P (n − k)βn−k

|σn(0)|
P (n)βn

P (n − k)βn−k

P (n)βn
−→

k∑

j=0

ci,j
aj

a0
β−k =: bi,

for n → ∞, which will be important later. We remark that by (5) in the
canonical case

b
(n)
i = t~e

(k+1)
i Mk

σ~vn−k = t~e
(k+1)
i ~vn = |σn(i)|

and therefore bi = ai

a0
. Put b0 = 1.

We now use the general theory of roundwalks developed in [40] and [10].

The following result displays some properties of a
(n)
i and b

(n)
i .
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Theorem 2. The domain of w(n) is a fundamental domain of the lattice

Λ(n) := Z

(

~a
(n)
1 − ~a

(n)
0

)

+ . . . + Z

(

~a
(n)
k − ~a

(n)
0

)

.

If d0~a
(n)
0 + d1~a

(n)
1 + . . . + dk~a

(n)
k = ~0 for integers d0, d1, . . . , dk ∈ Z, then

d0 = t ·
∣
∣
∣det

(

~a
(n)
1 , . . . ,~a

(n)
k

)∣
∣
∣ and

di = t ·
∣
∣
∣det

(

~a
(n)
1 , . . . ,~a

(n)
i−1,−~a

(n)
0 ,~a

(n)
i+1, . . . ,~a

(n)
k

)∣
∣
∣

for i = 1, . . . , k and some integer t. Moreover, the number m at position
~x = (x1, . . . , xk) ∈ Zk in w(n) is congruent to

k∑

i=1

xib
(n)
i (mod s(n))

and ~x is congruent to m~a
(n)
0 (mod Λ(n)).

Proof. The first and second part of the theorem follow immediately from the
much more general theory in [10] (cf. also [35, Lemma 4.2]). For the last part

we only have to show that the value of the unit vectors ~e
(k)
i (i = 1, . . . , k) in

w(n) are given by b
(n)
i for every n ∈ N. The rest follows immediately from

the fact that g(n), which extends w(n) to Zk by being constant on cosets of
Λ(n), is a linear function (see [10, p. 181]).

By (4) the value at ~e
(k)
i is equal to ‖tMn−k

σ ~ci‖1 where ‖ · ‖1 denotes as
usual the sum of the components of the vector. We have, by Lemma 1 and
(9),

‖tMn−k
σ ~ci‖1 =

∥
∥
∥
∥
∥
∥

k∑

j=0

ci,j
tMn−k

σ ~e
(k)
j

∥
∥
∥
∥
∥
∥

1

=
k∑

j=0

ci,j

∥
∥
∥

tMn−k
σ ~e

(k)
j

∥
∥
∥

1

=

k∑

j=0

ci,j |σn−k(j)| = b
(n)
i .

Observe that the same calculation with tMn
σ~e

(k+1)
0 instead of tMn−k

σ ~ci gives

the identity s(n) = |u(n)|. ¤

The sequence of lattices Λ(n) from the last theorem is called a continued
lattice (they first appeared in [40] by generalising the continued fraction
algorithm). In the canonical case we have some additional properties:

Theorem 3. Assume that we are in the canonical case and let n ≥ 0. Then

(i) Λ(n) is a lattice with lattice determinant s(n).

(ii) For i = 1, . . . , k the vector ~e
(k)
i is in the same coset of Λ(n) as

|σn(i)|~a(n)
0 .
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(iii) For m = 1, . . . , s(n) we have

Φ∗
n(Pm) ≡ m~a

(n)
0 (mod Λ(n)).

Proof. We start with (i). It follows from (8) that
(

~a
(n)
0 ,~a

(n)
1 , . . . , (i), . . . ,~a

(n)
k

)

,

where (i) indicates that ~a
(n)
i is omitted, is the minor of M−n

σ corresponding
with the entry |σn(0)|i of Mn

σ . Since det(Mσ) = ±1 by (A4), we obtain from
linear algebra and Lemma 1 that, for a fixed choice of the ±-sign,

(−1)i det
(

~a
(n)
0 ,~a

(n)
1 , . . . , (i), . . . ,~a

(n)
k

)

= ±|σn(0)|i
for i = 0, 1, . . . , k. Hence

∣
∣
∣det

(

Λ(n)
)∣
∣
∣ =

∣
∣
∣
∣
∣

k∑

i=0

(−1)i det
(

~a
(n)
0 ,~a

(n)
1 , . . . , (i), . . . ,~a

(n)
k

)
∣
∣
∣
∣
∣

=
k∑

i=0

|σn(0)|i = |σn(0)| = s(n)

and therefore (i) holds.

Next (ii). Let i ∈ {1, . . . , k}. The vector tMn
σ~e

(k+1)
i in Zk+1 is trans-

formed to the vector ~e
(k+1)
i in Zk+1 and then projected to ~e

(k)
i in Zk.

By Lemma 1 we have t~e
(k+1)
i Mn

σ = (|σn(i)|0, . . . , |σn(i)|k). Hence the
point (|σn(i)|0, . . . , |σn(i)|k) is transformed and subsequently projected to
∑k

j=0 |σn(i)|j~a(n)
j . Thus, by the definition of Λ(n),

~e
(k)
i =

k∑

j=0

|σn(i)|j~a(n)
j ≡

k∑

j=0

|σn(i)|j~a(n)
0 = |σn(i)|~a(n)

0 (mod Λ(n)).

Finally (iii). We know that Pm is the sum of m unit vectors, the unit

vector ~e
(k+1)
i is mapped to ~a

(n)
i and ~a

(n)
i ≡ ~a

(n)
0 (mod Λ(n)) for i = 0, 1, . . . , k.

Therefore the statement is valid. ¤

We now define a sequence of new words ŵ = (ŵ(n))n≥0, which is closely

related to the original sequence. In contrast to w(n) the word ŵ(n) will be a
k-dimensional word defined over the (infinite) alphabet [0, 1). The domain

of ŵ(n) is the same as the domain of w(n), i.e. equal to Φn(An). For ~x in the

domain of w(n) we define

(11) ŵ(n) (~x) :=

{
k∑

i=1

xi
b
(n)
i

s(n)

}

,

where {z} denotes the fractional part of z, i.e. {z} = z mod 1 (see Fig. 4
and observe that Theorem 2 is the motivation for this definition).
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w(4) ŵ(4)

61

81

101 11 50

70

90 00 40

112 22

120 30

6
13

8
13

10
13

1
13

5
13

7
13

9
13 0 4

13
11
13

2
13

12
13

3
13

Fig. 4: The roundwalk w(4) (the subscript indicates the next

jump) and its normalization ŵ(4) for the flipped Tribonacci

substitution σ(0) = 01, σ(1) = 20, σ(2) = 0.

The sequence ŵ(n) converges to some k-dimensional limit word Ŵ :=
limn→∞ ŵ(n) over the alphabet [0, 1) defined on a certain subset of Zk in the

following way: the domain of Ŵ is the union of all domains Φn(An) of ŵ(n),

i.e. domŴ :=
⋃∞

n=0 Φn(An) = limn→∞ Φn(An), and if ~x ∈ domŴ then

Ŵ (~x) := lim
n→∞

ŵ(n)(~x).

We have the following result:

Theorem 4. The word Ŵ is well-defined on domŴ and

(12) Ŵ (~x) =

{
k∑

i=1

xibi

}

.

Proof. The statement is trivially true for ~x = ~0. Since ŵ(n) is defined by
(11) the existence of limn→∞ ŵ(n)(~x) follows at once from (10). For the

second part we have to show that Ŵ (~x) < 1; the result then follows from

the definition and (10). For ~x ∈ domŴ there exists n0 ∈ N such that ~x ∈
domŵ(n) for all n ≥ n0. By Theorem 1 it follows that 1 − ŵ(n)(~x) can be
bounded from below by

|σk(l)|
s(n0+k)

=

|σk(l)|
P (k)βk

|σn0+k(0)|
P (n0 + k)βn0+k

P (k)

P (n0 + k)βn0
−→ al

a0βn0
> 0,

for k = n−n0 → ∞, where l is the jump to get from w(n0)(~x) to w(n0)(~x)+1
and where we have used that all aj > 0, i.e. assumption (A3). ¤

Thus the limit word is the restriction of the linear function Zk −→ [0, 1)

defined by ~x = t(x1, . . . , xk) 7→ x1b1 + . . . + xkbk mod 1 to domŴ .
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Observe that if ~x ∈ domŴ , then there is a minimal n0 such that ~x is in
domŵ(n0) and it follows that

w(n) (~x) =
k∑

i=1

xib
(n)
i (mod s(n))

for all n ≥ n0.
It is easy to show that it may happen that the domain of Ŵ is not Zk

(see Example 2 in Section 6). Our aim is (and that will be the main result

of this paper) to clarify where the limit Ŵ exists and, especially, when it is
defined everywhere on some submodule of Zk. If the latter is the case, we
will say that Ŵ is space filling (has the space filling property).

4. Abstract number systems

In this section we describe how to a given substitution σ : Σ → Σ∗, where
Σ = {0, 1, . . . , k}, a number system can be associated. It is well-known (cf.
[26]) that a substitution σ defines an automaton in the following way:

(i) the set of states Q is equal to letters of the alphabet Σ,
(ii) a transition from state a to state b (a, b ∈ Σ) labeled i is added if b

occurs in σ(a) at position i,
(iv) q0 = 0 is the initial state and finally
(v) all states are final states.

So, the associated automaton is given by M = (Q, q0, ∆, δ, F ), where
∆ = {0, 1, . . . , l} with l := max{|σ(q)| − 1 : q ∈ Q} is the set of labels,
δ : Q × ∆ → ∆ is the transition function and F = Q denotes the set of
final states. As above we denote by ∆∗ the free monoid generated by ∆ for
the concatenation product. The neutral element is ε and the the length of
a word w ∈ ∆∗ is denoted by |w|. The function δ is naturally extended to
Q × ∆∗ by δ(q, ε) = q and δ(q, dw) = δ(δ(q, d), w) where q ∈ Q, d ∈ ∆ and
w ∈ ∆∗.

Fig. 5: Automaton associated to the flipped Tribonacci substitu-

tion σ(0) = 01, σ(1) = 20, σ(2) = 0.
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The language L associated to the substitution is the language of the as-
sociated automaton M, that is the collection of strings accepted by the au-
tomaton (all paths in the automaton from the initial state to a final state),
i.e.

L = {w ∈ ∆∗ : δ(q0, w) ∈ F}.
Moreover, if q ∈ Q, we denote by Lq the language accepted in M in case q
is the initial state, i.e.

Lq = {w ∈ ∆∗ : δ(q, w) ∈ F}.

In particular, Lq0 = L0 = L. Observe that from our conditions on the
substitution σ the automaton is trim, i.e. accessible and coaccessible, finite
and deterministic (for more information on automata we refer to [18]) and
therefore the languages Lq are regular languages. For q ∈ Q and n ∈ N, we
denote by uq(n) the number of words of length n accepted from q in M, i.e.

uq(n) = #{w ∈ ∆n : δ(q, w) ∈ F}.

The genealogical ordering (also known as radix ordering or military
ordering) is defined as follows: if u and v are words over ∆, then we define
u < v, if either |u| < |v| or |u| = |v| and there exist p, u′, v′ ∈ ∆∗, d, e ∈ ∆
such that u = pdu′, v = pev′ and d < e. This ordering is naturally
extended to the set ∆ω of all the infinite words over ∆ according to the
lexicographical ordering. The triple S = (L, ∆, <) is called an abstract
number system (or abstract numeration system), since the words of L can
be enumerated by increasing genealogical ordering leading to a one-to-one
correspondence between N and L (cf. [27]). It is well-known (and easy to
prove) that the i-th letter in σn(0) is the state the automaton M will be in
after it is fed with the i-th word of length n of its ordered input language
L. Thus we have for the limit word U = (Un)n∈N = limn→∞ σn(0) that Ui

is the state the automaton M will be in after it is fed with the i-th word
of the language L if we ignore the words with leading zeroes. For details we
refer to [26, Chapter 7].

Next we show that under suitable conditions every real number in the
interval [0, 1) can be represented by a unique word from L∞ where L∞ is
the set of infinite words which are limit of a converging sequence of words
in L using the usual infinite product topology on ∆ω.

Let β be the dominant root of the incidence matrix Mσ of σ (cf. assump-
tion (A2)) and assume additionally that

(A5) the dominant root β is > 1.

Put τ = β−1. We remark that under the made conditions β has to be irra-
tional: if β ∈ Q, then it would be a rational integer, because β is an algebraic
integer, and consequently, we would have β = 1, since Mσ is unimodular.
Thus β /∈ Q by (A5).
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Observe that, by remarks made above, Mσ is the adjacency matrix of the
automaton, i.e. Mσ = (#{d ∈ ∆ : δ(p, d) = q})p,q∈Q. We have the following
simple lemma (cf. (2)).

Lemma 4. There is a monic polynomial P (x) ∈ Q(β)[x] such that the limit

aq := lim
n→∞

uq(n)

P (n)βn

exists for every q ∈ Q. Moreover, aq ∈ Q[τ ], aq ≥ 0.

Proof. We just have to observe that uq(n) = |σn(q)|. This follows by induc-
tion on n. Trivially, uq(1) = |σ(q)|. Clearly, we have that

(13) up(n) =
∑

q∈Q

#{d ∈ ∆ : δ(p, d) = q} uq(n − 1)

for all n ≥ 1 and p ∈ Q. Hence the vector u(n) = t(uq0(n), . . . ,uql
(n))

satisfies the linear recurrence relation u(n) = Mσu(n − 1) and therefore
the same as the vector ~vn = t(|σn(0)|, . . . , |σn(k)|) considered in Section 2.
Since β is the dominant root of Mσ, Lemma 4 follows from Lemma 2 with
p = 1. Here we use that the minimal polynomial of β is monic and has
constant ±1 so that β ∈ Q[τ ]. (For aq ∈ Q[τ ] compare with [34, Lemma
4.1].) ¤

The monicity of P in Lemma 4 is rather arbitrary. In fact, if we replace
P (n) by τ

aq0
P (n), the limits also exist and lie in Q[τ ]. Thus, dropping the

monicity of P , we may assume that

(A6) aq0 = τ

and we will do so for the rest of the paper. Observe that

(14) βaq =
∑

d∈∆
(q,d)∈domδ

aδ(q,d),

where domδ denotes the domain of the partial function δ. This means that
the vector ~a = t(aq0 , . . . , aqk

) is an eigenvector of Mσ to the eigenvalue β,
i.e. the above relation can be rewritten as

(15) Mσ~a = β~a.

For q ∈ Q, t ∈ ∆ we define

αq(t) :=
∑

q′∈Q

(
aq′ · #{d < t : δ(q, d) = q′}

)
.

Moreover, we set

αq := αq(l + 1) =
∑

q′∈Q

(
aq′ · #{d ∈ ∆ : δ(q, d) = q′}

)
.
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We remark that αq = (Mσ~a)q = βaq and in particular α0 := αq0 = βaq0 = 1.
Set

Aq := [0, αq) =
l⋃

d=0

[αq(d), αq(d + 1))
︸ ︷︷ ︸

=:Aq,d

.

We have Aq0 = [0, 1). We will use the following algorithm:
Let x ∈ (0, 1) and set w ← ε, q ← q0. Then iterate the operations

1. Find d ∈ ∆ such that x ∈ Aq,d

2. w ← wd
3. x ← β (x − αq(d))
4. q ← (σ(q))d

The output of the algorithm is the word w which we call the σ-representation
of x. Conversely we say that x is the numerical value of w. If x = 0 at some
stage, then it remains 0 and we say that x has a finite σ-representation where
we stop after the last non-zero value of q. The σ-representation of 0 is by
definition 0. Observe that the length of Aq,d is aq′ for q′ = (σ(q))d. Hence,
the new x is in Aq′ . That is why the algorithm works correctly. The next
theorem states that the algorithm induces a bijection between [0, 1) and the
words in L∞.

Theorem 5. Every number x ∈ [0, 1) has a unique σ-representation (dj)
∞
j=1

in L∞ such that

x =
∞∑

j=1

αδ(q0,d0···dj−1)(dj)τ
j−1

with d0 = ε. Conversely, for every (dj)
∞
j=1 in L∞ the above equation gives a

unique element x in [0, 1).

Proof. This follows immediately from the construction above. ¤

We remark that this result is not new. It can be found in [16, 3.2
Théorème] in the context of substitutions with a primitive incidence matrix
Mσ. Moreover, such number systems were studied extensively for arbitrary
regular languages satisfying the conclusion of Lemma 4 in recent years in
[28, 29, 21, 34]. To our knowledge our formulation is new, but we tried to
be as close as possible to the notation of the mentioned papers.

We consider two important classes of numbers, namely those with periodic
and those with finite σ-representations. We say that an element x ∈ Q(β)∩
[0, 1) has an ultimately periodic σ-representation if and only if when applying
the algorithm we find (ω, x, q) and (ω′, x′, q′) such that x = x′ and q = q′

(compare with [29, Theorem 27]). We call an algebraic integer β a Pisot
number if all conjugates other than itself have modulus less than one and a
Salem number if the modulus of all the conjugates other than itself is less
than or equal to one and at least one is equal to one. Recently, Rigo and
Steiner [34] showed that if β > 1 is a Pisot number, then the set of real
numbers in [0, 1) with finite or ultimately periodic σ-representation equals
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Q(β) ∩ [0, 1). This generalized the well-known result on Rényi’s classical β-
expansion [33, 31] by Bertrand [14] and Schmidt [42] and a first attempt
in [29] for abstract number systems. Moreover, they showed that if β is
neither a Pisot nor a Salem number, then there exists at least one point in
Q(β) ∩ [0, 1) which has an infinite σ-representation which is not ultimately
periodic.

We denote by Fin(β) the set of all numbers x ∈ [0, 1) whose σ-
representation is finite. We claim that

(16) Fin(β) ⊆ Zaq0 + Zaq1 + . . . + Zaqk
.

Indeed, by the theorem every element in Fin(β) is a finite linear combination
of terms of the form aqτ

n−1. Since this is one of the coordinates of the

vector τn−1~a = M−k
σ ~a and M−1

σ has integral entries by (A4), it follows
that aqτ

n−1 ∈ Zaq0 + Zaq1 + . . . + Zaqk
. This proves (16). By aq0 = τ , we

especially have Z[τ ] ⊆ Zaq0 + Zaq1 + . . . + Zaqk
=: Ω. The following lemma

gives information about Ω.

Lemma 5. Let Ω = Zaq0 + Zaq1 + . . . + Zaqk
. Then

(i) Ω is a Z-module that is not necessarily free.
(ii) If Ω is free, then dim Ω = deg β and therefore

Z[τ ] ⊆ Ω ∼= Z[τ ] ∼= Zdeg β

as Z-modules. In this case we can choose a basis from aq0 , . . . , aqk
.

(iii) If ~u0, . . . , ~uk−1 are linearly independent over Z, then Ω = Z[τ ].

Proof. Clearly, Ω is a Z-module. For a substitution with incidence matrix




1 3 2
0 2 5
0 1 3





we have

(a0, a1, a2) =

(

τ,−19

47
τ +

13

47
,

5

47
τ +

4

47

)

,

where τ2 − 5τ + 1 = 0. Hence Ω is not necessarily free.
Next (ii). Since Z[τ ] ⊆ Ω, the dimension is at least deg β. On the other

hand, from aq ∈ Q[τ ] it follows that ai, 1, τ, . . . , τdeg β−1 are linearly depen-
dent over Z for i = 0, 1, . . . , k. If Ω is free and therefore has a basis, its
dimension is equal to deg β. Obviously, the basis can be chosen from the set
of generators.

Finally (iii). We already observed above that τn ∈ Ω for every n ∈ N,
because of the zeroth coordinate in the equation τ~a = M−1

σ ~a. Hence
Ω = Z[τ ] if the zeroth row vectors of Mσ, M0

σ , M−1
σ , . . . , M2−k

σ are linearly
independent over Z. Since Mσ is unimodular, this is equivalent with the
zeroth row vectors of Mk−1

σ , Mk−2
σ , . . . , Mσ, M0

σ being linearly independent
over Z, which is the same as ~u0, . . . , ~uk−1 being linearly independent over
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Z. ¤

Observe that it is easy to decide whether Ω is free or not, since we only
have to pick a basis from aq0 , . . . , aqk

(so that all the other elements are
linear combinations of them with integer coefficients).

As in the classical case of β-expansions (e.g. in [1, 3, 20]) we consider the
condition

(F) Fin(β) = (Zaq0 + Zaq1 + . . . + Zaqk
) ∩ [0, 1).

This condition says that all possible candidates indeed have a finite σ-

representation. We denote the conjugates of x, aq, β in Q(β) by x(j), a
(j)
q , β(j)

for j = 0, 1, . . . ,degβ − 1, q ∈ Q with the convention that x(0) = x, a
(0)
q =

aq, β
(0) = β. By using the methods from [1, 3, 20] we prove

Theorem 6.

(a) Let β be a Pisot number. Then β has the property (F) if and only if
every element of the finite set

{

x ∈ Ω : |x(j)| ≤ Mj (j ≥ 0)
}

,

where M0 = max{αq : q ∈ Q} and, for j = 1, . . . ,degβ − 1,

Mj =
max

{

|a(j)
q | : q ∈ Q

}

· #∆ · #Σ

1 − |β(j)|
has a finite σ-representation in every language Lq (with q ∈ Q).
Moreover, this can be checked effectively.

(b) If Z[τ ]∩[0, 1) ⊆ Fin(β), then β is a Pisot number or a Salem number.

Proof. We first prove (a). We show that the validity of (F) can be decided
by checking only the finitely many elements x in the displayed set. First let
x ∈ Ω ∩ [0, 1) with expansion

x =
∞∑

j=0

∑

q∈Q

aqεq,jτ
j ,

where εq,j = #{s < dj : δ(δ(q0, d0 · · · dj−1), s) = q} are integers and d0d1 · · ·
is the σ-representation of x, and aq ∈ Q[τ ]. Let ε > 0 and m so large that

∣
∣x(j)

∣
∣

(∣
∣β(j)

∣
∣

)m
< ε

for j = 1, . . . ,degβ − 1. We consider

(17) y := xβm −
m−1∑

j=0

∑

q∈Q

aqεq,jτ
j−m =

∞∑

j=0

∑

q∈Q

aqεq,m+jτ
j .

Obviously, we have y ∈ Ω, 0 ≤ y < αq for some q ∈ Q and |y(j)| < ε + Mj

for j > 0. Therefore, since ε > 0 is arbitrary, it suffices to check whether or
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not all expressions in the set

(18)
{

y ∈ Ω : |y(j)| ≤ Mj for j = 0, 1, . . . ,degβ − 1
}

have a finite σ-representation in all languages Lq with q ∈ Q. Equivalently,
we may consider all the elements contained in

{

x ∈ Z[τ ] : |x(j)| ≤ bj

}

,

where bj = Mj · min{n ∈ N : naqi
∈ Z[τ ] for i = 1, . . . , k} (j =

0, 1, . . . ,deg β − 1). It is now easy to compute these numbers effectively,
since we can solve the equations B~x = ~z where

B =








1 τ · · · τdeg β−1

1 τ (1) · · · (τ (1))deg β−1

...
...

. . .
...

1 τ (deg β−1) · · · (τ (deg β−1))deg β−1








,

~x ∈ Zdeg β are the coordinates of x in the basis 1, . . . , τdeg β−1, and with
‖~z‖∞ ≤ max{bj : j = 0, . . . ,deg β − 1} and where ‖ ‖∞ denotes the usual

maximum norm. Since 1, τ, . . . , τdeg β−1 is a basis of Q(β), the determinant
of B, which is equal to the discriminant of the number field, is different from
zero. Therefore, we get

‖~x‖∞ = ‖B−1~z‖∞ ≤ ‖B−1‖∞ · ‖~z‖∞

≤ max
j=0,...,deg β−1

{
deg β−1
∑

i=0

∣
∣(B−1)i,j

∣
∣

}

· max
j=0,...,deg β−1

{bj},

where (B−1)i,j is the element at position (i, j) in B−1. Thus we have an
effective bound for ‖~x‖∞ and it suffices to show that all elements in (18)
obtained by such ~x have a finite σ-representation.

To conclude the first part, we only have to point out that when applying
the expansion algorithm to one of the elements in the set in (18), we remain
in the same set, since this just means to increase m by 1 in (17), and
therefore the possible period (observe that by the result in [34] all elements
have an ultimately periodic σ-representation) is bounded by the cardinality
of this set.

Next (b). Suppose Z[τ ] ∩ [0, 1) ⊆ Fin(β). Assume that β has a conjugate

γ = β(j) with γ 6= β, |γ| > 1. Let η = max{β−1, |γ|−1}. Take x := [βm] −
βm + 1, where [z] is the largest integer less than or equal to z. It is plain
that 0 < x < 1. By assumption x has a finite expansion

x =
k∑

j=0

∑

q∈Q

aqεq,jτ
j .
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Taking conjugates we get

[βm] − γm + 1 =
k∑

j=0

∑

q∈Q

a(j)
q εq,jγ

−j .

Subtracting the two expansions we end up with

γm − βm =
k∑

j=0

∑

q∈Q

εq,j(aqτ
j − a(j)

q γ−j)

and by observing that 0 ≤ εq,j ≤ l we see that the right-hand side is bounded
by

2 max
{∣

∣a(j)
q

∣
∣ : q ∈ Q, j = 0, . . . ,deg β − 1

}

· #∆ · #Σ · (1 − η)−1,

whereas the left-hand side of the equation is unbounded. This contradiction
shows that β is a Pisot number or a Salem number. ¤

An alternative proof that the set (17) is finite follows from the fact that
all these elements are contained in the set of solutions of the norm form
inequality NQ(β)/Q(z) ≤ b0b2 · · · bdeg β−1, which has finitely many solutions
by Schmidt’s famous result on norm form equations [43, Satz 2, p. 5] (see
also [19]). However, this method is ineffective.

The second statement of Theorem 6 implies that from (F) we can conclude
that β is a Pisot number or a Salem number. Moreover, we remark that the
statement holds not only in the case of number systems associated to the
underlying substitution, which is considered throughout this paper, but in
the context of abstract number systems as well.

It follows from our proof that if an element of Ω ∩ [0, 1) does not have a
finite expansion, then its expansion is ultimately periodic (this follows also
from a result of Rigo and Steiner [34]). If so, from the proof of Theorem
6(a) we can deduce an upper bound for the preperiod depending on the
input x (using the ε-condition) and an upper bound for the period (viz. the
cardinality of the set (18)). In particular, only finitely many distinct periods
can occur.

Finally, we point out that the condition in the first part of the theorem
can be simplified if the automaton has the property that

(19) δ(q0, w) = q0 infinitely often as |w| → ∞.

This is the case e.g. for the Tribonacci expansion considered in [35] and
more generally for all so-called β-substitutions, that are substitutions of the
form σ(0) = 0n01, σ(1) = 0n12, . . . , σ(k − 1) = 0nk−1k, σ(k) = 0nk , where
n0, nk > 0 and ni ≥ 0 (i = 1, . . . , k − 1). Then the abstract number system
associated to it generates the usual β-expansion and the incidence matrix
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has the form 








n0 1 0 · · · 0
n1 0 1 · · · 0
...

...
. . .

...
nk−1 0 0 · · · 1
nk 0 0 · · · 0










(cf. [29]).
If we have the additional property (19), it suffices to check whether or not

all elements in
{

x ∈ Ω ∩ [0, 1) : |x(j)| ≤ Mj (j ≥ 1)
}

have a finite expansion in the language L. (It is not necessary to check all
languages Lq as above.) This follows from the proof of Theorem 6(a), since
we can choose some large m such that δ(q0, d0 · · · dm−1) = q0.

5. The space filling property

In this section we will link the number system associated to the substitu-
tion introduced in the previous section with the words ŵ(n) and show that
the question whether this word converges to a word that is space filling or
not can be decided by means of the first part of Theorem 6. From now on
we write a0, a1, . . . , ak instead of aq0 , aq1 , . . . , aqk

.

Write C for the matrix with column vectors tMk
σ~e

(k+1)
0 ,~c1, . . . ,~ck intro-

duced in Section 3. We mention that in the canonical case C = tMk
σ . Put

~a = t(a0, . . . , ak) and ~b = t(b0, . . . , bk), where the bi are defined in (10). We

derive the following important relation between ~b and ~a.

Lemma 6. For all n ∈ N we have

(20) ~b = τn−1 tCMn−k
σ ~a.

Proof. By (15), (A6) and (10) we have

τn−1 tCMn−k
σ ~a = β1−n tCβn−k~a = β1−k tC~a = ~b.

Thus we have proved the assertion. ¤

In case that ~ci equals the incidence vector ~ui = tM i
σ~e

(k+1)
0 of u(i) for

i = 1, . . . , k we get

bi = τk−1 t~ci~a = τk−1 t~e
(k+1)
0 M i

σ~a = τk−1 t~e
(k+1)
0 βi~a = τk−i−1a0 = τk−i

for i = 1, . . . , k.
By (20) with n = 1 we have

Z + Zb1 + . . . + Zbk = Za0 + . . . + Zak = Ω.

In case ~ci = ~ui for i = 1, . . . , k this implies Ω = Z[τ ] by Lemma 5(iii).
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In Section 3 we also introduced the projections Π : Zk+1 → Zk and

Φn : Zk+1 → Zk and the transition vectors ~a
(n)
i (i = 0, 1, . . . , k). The identity

(20) has the following consequence.

Lemma 7. For all n ∈ N and i = 0, 1, . . . , k we have

(21) (b1, . . . , bk) · ~a(n)
i ≡ aiτ

n−1 (mod 1).

Proof. Let the inverse matrix of M
(n−k)
σ C have respective column vectors

~x
(n)
0 , . . . , ~x

(n)
k , hence M

(n−k)
σ C~x

(n)
i = ~e

(k+1)
i for i = 0, 1, . . . , k. Then, for

i = 1, . . . , k, by (7) and the definition and linearity of Φn,

~a
(n)
i = Φn(~e

(k+1)
i ) = Φn(M (n−k)

σ C~x
(n)
i )

= x
(n)
i0 Φn(tMn

σ~e
(k+1)
0 ) +

k∑

j=1

x
(n)
ij Φn(tM (n−k)

σ ~cj) =
k∑

j=1

x
(n)
ij ~e

(k)
j = Π~x

(n)
i ,

where ~x
(n)
i = t(x

(n)
i0 , . . . , x

(n)
ik ) ∈ Zk+1 (i = 0, . . . , k) by the unimodularity of

Mσ and C. We obtain, by (20) and (15),

(b1, . . . , bk) · ~a(n)
i = τn−1Π(t~a tM (n−k)

σ C) Π(~x
(n)
i )

= τn−1 t~a tM (n−k)
σ C~x

(n)
i − τn−1 t~a tM (n)

σ ~e
(k+1)
0 x

(n)
i0

= τn−1 t~a~e
(k+1)
i − τn−1 x

(n)
i0 βna0 = τn−1ai − x

(n)
i0 ≡ τn−1ai (mod 1),

since x
(n)
i0 ∈ Z. ¤

From the proof of Lemma 7 it follows that

Φn(~x) = Π
(

C−1 tMk−n
σ ~x

)

for all ~x ∈ Zk+1 (compare with (6) for Φ∗
n). Especially, this means that

the transition vectors are equal to the columns of C−1 after deletion of the
zeroth entries.

We now define a function f from Zk to (Za0 + . . . + Zak) ∩ [0, 1) by

f(~x) := f(x1, . . . , xk) := (b1, . . . , bk) · ~x (mod 1) =

{
k∑

i=1

xibi

}

where ~x = t(x1, . . . , xk). This function is linear modulo 1. Further, by (21),

(22) f(~a
(n)
i ) ≡ aiτ

n−1 (mod 1).

Moreover, if a0, . . . , ak is a basis of the Z-module Ω = Za0 + . . . + Zak, then
it is bijective and by (21) we have, provided that aiτ

n−1 < 1,

~a
(n)
i = f−1

(
aiτ

n−1
)
.
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Generally, f is an epimorphism of Z-modules. By (12) the limit word Ŵ is the

restriction of f on its domain, i.e. for all ~x ∈ domŴ we have f(~x) = Ŵ (~x).

Therefore, studying f results in getting information on Ŵ .
Using these facts together with Theorem 1 we will characterize the domain

of the words ŵ(n).

Theorem 7. If ~x ∈ Zk is in the domain of ŵ(n), then f(~x) has a finite
σ-representation d1 . . . dn of length at most n, i.e.

f(~x) =
n∑

j=1

αδ(q0,d0···dj−1)(dj)τ
j−1

with d0 = ε. Conversely, for all elements ~x in the domain of ŵ(n) the σ-
representations of f(~x) are different and all words in L of length at most n
appear.

Moreover, if the σ-representation of f(~x) for ~x in the domain of ŵ(n−1)

is d0 · · · dn−1, q = δ(q0, d0 · · · dn−1) and w(n)(x) = m, then

w(n)

(

~x +
s∑

i=1

~a
(n)
(σ(q))i

)

= m + s

and the (m + s)-th letter in u(n) is (σ(q))s for s = 1, . . . , |σ(q)|, whereas

~x +

|σ(q)|
∑

i=1

~a
(n)
(σ(q))i

= ~x + ~a(n−1)
q

is in the domain of w(n−1).

Proof. We prove the assertion by induction on n.
For n = 0, 1 the statement is trivially true. Observe that δ(q0, d0) = 0,

which gives the second part of the statement, namely the jumps we have to
make with the transition vectors when going from the origin (the only point

in the domain of ŵ(0)) to the points in domŵ(1) obtained from u(1) = σ(0).

Suppose ~x ∈ Zk is in the domain of ŵ(n−1) and has the σ-representation
d0d1 · · · dn−1. Then, by the induction hypothesis,

f (~x) =
n−1∑

j=1

αδ(q0,d0···dj−1)(dj)τ
j−1.

Let δ(q0, d0d1 · · · dn−1) = q. Then ~x is also in the domain of ŵ(n) and the

new elements in ŵ(n) which originate from ~x are given by

~ys := ~x +
s∑

i=1

~a
(n)
(σ(q))i

(s = 1, . . . , |σ(q)| − 1).
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For s = |σ(q)| we get the successor of ~x in w(n−1) according to (14). We
have, by (22),

f

(

~x +
s∑

i=1

~a
(n)
(σ(q))i

)

≡ f (~x) +
s∑

i=1

f
(

~a
(n)
(σ(q))i

)

≡
n−1∑

j=1

αδ(q0,d0···dj−1)(dj)τ
j−1 +

s∑

i=1

a(σ(q))i
τn−1

=
n∑

j=1

αδ(q0,d0···dj−1)(dj)τ
j−1 (mod 1),

where dn = s, because, by the previous section,

αδ(q0,d0···dn−1)(dn) = αq(s)

=
∑

q′∈Q

(
aq′ · #{t < s : δ(q, t) = q′}

)
=

s∑

i=1

a(σ(q))i
.(23)

By the second part of Theorem 5,
∑n

j=1 αδ(q0,d0···dj−1)(dj)τ
j−1 is the σ-

representation of some number in [0, 1). It follows that the congruence is

in fact an equality. Moreover, since the value of w(n) is uniquely determined
by the word d0d1 · · · dn, we conclude (by Theorem 5) that this is really the
representation of f(~ys) which proves the assertion. Obviously, all represen-
tations are different and all words in L of length at most n appear.

The second part of the theorem follows at once from the consideration
above together with Theorem 1. ¤

We need still another lemma (which is implicitly contained in the last

theorem) to characterize the space filling property of the word Ŵ .

Lemma 8. If ~x ∈ Zk is in the domain of ŵ(n), then

(~x + ker f) ∩ domŵ(n) = {~x},
where ker f denotes the kernel of the map f .

Proof. We prove the statement by induction on n. For n = 0 the result is
trivial. Assume now that ~x, ~y ∈ domŵ(n) and ~x−~y ∈ ker f , i.e. f(~x) = f(~y).
It follows from the proof of Theorem 1 that we can write

~x = ~x0 +
s∑

i=1

~a
(n)
(σ(q))i

, ~y = ~y0 +
s′∑

i=1

~a
(n)
(σ(q′))i

,

for certain ~x0, ~y0 ∈ domŵ(n−1) and s, s′, q, q′ ∈ Σ. Therefore,

f(~x0) +
s∑

i=1

a(σ(q))i
τ i−1 ≡ f(~x) = f(~y) ≡ f(~y0) +

s′∑

i=1

a(σ(q′))i
τ i−1
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modulo 1 by (22), and we have equality by the same argument as at the
end of the proof of the theorem above. Since the representation of a number
in Ω ∩ [0, 1) is unique, it follows that s = s′, q = q′ and f(~x0) = f(~y0), but
the latter equality contradicts to the induction hypothesis, unless ~x0 = ~y0

and therefore ~x = ~y. ¤

The next result shows that all elements in the domain are completely
determined by their σ-representations and the transition vectors.

Corollary 1. If ~x ∈ domŴ with σ-representation d1 · · · dn of length n, then

~x =
n∑

j=1

dj∑

i=1

~a
(j)
(σ(δ(q0,d1d1···dj−1)))i

.

Proof. By Theorem 7, (23) and (21) we have

f(~x) =
n∑

j=1

αδ(q0,d0···dj−1)(dj)τ
j−1 =

n∑

j=1

dj∑

i=1

a(σ(δ(q0,d0···dj−1)))i
τ j−1

≡ (b1, . . . , bk) ·





n∑

j=1

dj∑

i=1

~a
(j)
(σ(δ(q0,d1d1···dj−1)))i



 (mod 1).

The vector in brackets is in the domain of Ŵ by Theorem 1. Furthermore
we recall f(~x) = (b1, . . . , bk) · ~x mod 1. The assertion now follows from
Lemma 8. ¤

We remark that it follows from Theorem 7 and its corollary that the Rauzy
color of w(n) at position ~x ∈ domw(n), that is the index of the transition
vector to make the jump from w(n)(~x) to w(n)(~x) + 1, is equal to the state
δ(q0, d0 · · · dn) the automaton M is in after it is fed with the representation

d0 · · · dn. (If ~x ∈ domw(h) for some h < n we read d0 · · · dn as d0 · · · dh0 · · · 0.)

00011 1101 1001 0111 0100001 0001111001
100001 011001 0001 1111001 110011 100011
000001 111 11 1 011 0011001 000011

010001 001 ε
111101 01 111111

001101 1111 11001 10001 01101
1101111 1001111 0111111 0011 00001

Fig. 6: All finite σ-representations of f(~x), i.e. all elements of Ŵ (~x),

where ~x = (x1, x2) has max{|x1|, |x2|} ≤ 3 in the canonical case for

the flipped Tribonacci substitution σ(0) = 01, σ(1) = 20, σ(2) = 0

(compare with Fig. 3).
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From Lemma 8 we see that if we factor out the kernel of f , we get a well
defined isomorphism of Z-modules given by

f∗ : Zk/ ker f −→ (Za0 + . . . + Zak) ∩ [0, 1) = Ω ∩ [0, 1)

~x + ker f 7−→ f(~x).

Observe that by Lemma 5(i) the Z-module Zk/(ker f) is not always isomor-

phic to some sublattice of Zk. If Ω is free, then we can map ŵ(n) to some
sublattice of Zk of dimension deg β − 1 by a projection Ψ along the kernel
of f as follows. Let 1, bi1 , . . . , bideg β−1

be a basis of Ω. Then each bi with
i /∈ {i1, . . . , ideg β−1} can be expressed as a linear combination in this basis.

We denote the corresponding vector by ~xi ∈ Zk, where we have removed the
zeroth coordinate, hence f(~xi) = 0 and ~xi has an entry 1 in position i and 0
at every position j /∈ {i1, . . . , ideg β−1, i}. Now the map Ψ can be described
by a linear combination of such vectors ~xi for any given point in the domain
of ŵ(n) such that all the coordinates at positions i with i /∈ {i1, . . . , ideg β−1}
become 0. Thus

Ψ
(

Zk/ ker f
)

=
⊕

i∈{i1,...,ideg β−1}

Z~e
(k)
i

∼= Zdeg β−1

and especially we have

domΨ
(
Ŵ

)
= Ψ

(

domŴ
)

=
⊕

i∈{i1,...,ideg β−1}

Z~e
(k)
i .

In other words, if ~x is in the domain of ŵ(n), then there is a representative
in the same coset mod ker f which is in this sublattice of Zk.

If Ω is free, then Ψ maps ŵ(n) onto the above sublattice of Zk. By com-
bining Theorems 6 and 7 we get the following result concerning the space
filling property of the the limit word Ŵ = limn→∞ ŵ(n). This answers the
question whether the limit word fills the submodule Zk/(ker f), that is the
corresponding sublattice of Zk if Ω is a free Z-module.

Theorem 8. The limit word Ŵ is space filling if and only if the associated
number system has the finiteness property (F). If β is a Pisot number, then
the space filling property is decidable.

Proof. By Theorem 7 the domain of the limit word Ŵ is in bijection with
Fin(β) by sending ~x ∈domŴ to f(~x). Therefore Lemma 8 shows that

the domain of Ŵ consists exactly of all elements ~x ∈ Zk for which f(~x)
is in Fin(β). The first statement now follows from the observation that
the domain of f equals (Za0 + . . . + Zak) ∩ [0, 1). Since by part (a) of
Theorem 6 property (F) is decidable if β is Pisot, the space filling property
is decidable in this case. This completes the proof. ¤

Observe that in the Pisot case the space filling property of Ŵ can therefore
be decided effectively by checking if all elements from the finite set given in
Theorem 6 admit only finite representations in all languages Lq (q ∈ Q).
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The above mentioned space filling properties carry over without any trou-
bles to the BV-words v (see [11, 12, 13]) studied in [10] and [45].

6. Examples

In this section we will give five examples illustrating the theory developed
in the previous sections. The first example is a substitution on three letters
which gives a limit word that is space filling everywhere in Z2. The second
example is the flipped Tribonacci substitution that was already mentioned
at some previous occasions in this paper and which leads to a word that is
not space filling. The next two examples give words that are space filling
in a 1- and 2-dimensional submodule that can be projected to a line and a
plane, respectively. The last example gives a word on four letters that is in
a 1-dimensional submodule which projects to a line but is not space filling.
We hope that these examples will give a better insight to the reader.

Example 1.
As a first example we consider the substitution

(E1) σ(0) = 0001, σ(1) = 02, σ(2) = 0

with incidence matrix and its inverse given by

Mσ =





3 1 0
1 0 1
1 0 0





and

M−1
σ =





0 0 1
1 0 −3
0 1 −1



 .

The characteristic polynomial of Mσ is x3 − 3x2 − x − 1 and therefore Mσ

has a dominant eigenvalue β ≈ 3.383 and τ = β−1 ≈ 0.296. By calculating
the normalized eigenvector of Mσ to the eigenvalue β we get

~a = (a0, a1, a2) = (τ, τ2 + τ3, τ2).

Hence, the Z-module Ω equals Z[τ ].
By using M−1

σ it is easy to compute the transition vectors for the canonical
projection Φ∗

n. We have

n ~a
(n)
0 ~a

(n)
1 ~a

(n)
2

1 t(0, 1) t(0,−3) t(1,−1)
2 t(1,−1) t(−3, 4) t(−1,−2)
3 t(−1,−2) t(4, 5) t(−2, 6)

The automaton associated to σ is given by:
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The associated number system scheme as described in the algorithm in
Section 4 is given by

Therefore, we get the following projections of u(1) = 0001, u(2) = 0001000
1000102, u(3) = 00010001000102000100010001020001000100010200010 for
n = 1, 2, 3 in the canonical case:

w(1) w(2) w(3)

3
2
1
0

12
8 13
4 9
0 5 10

1 6 11
2 7

3

42
28 46

43 14 32
29 0 18 36

44 15 33 4 22 40
30 1 19 37 8 26

45 16 34 5 23 41 12
31 2 20 38 9 27
17 35 6 24 13
3 21 39 10

7 25
11

From the three images above we would expect that the limit word Ŵ
will be space filling. Indeed that is the case since the associated number
system has property (F). This follows either by applying Theorem 6, where
we have to check whether all elements of the form x0 + x1τ + x2τ

2 with
‖(x0, x1, x2)‖∞ ≤ 162 have a finite expansion in the language L (since the
remark after Theorem 6 applies), or by applying the criterion in [1]. The
latter is allowed since β is a cubic Pisot unit and the number system is the
usual β-expansion of a number (cf. the end of Section 4).

Since Ω is free with full dimension and (b0, b1, b2) = (1, τ + τ2, τ), we
have f(x1, x2) = x1(τ + τ2) + x2τ mod 1. This follows from the fact that
we are in the canonical case and thus the bi’s are obtained from the ai’s by
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dividing them by τ . The table below gives the expansions of all f(x1, x2)
with −3 ≤ x1 ≤ 3,−8 ≤ x2 ≤ 3:

2121 0111 1211 3 0301 20211 00111
1121 2221 0211 2 31 10211 21211
0121 1221 301 1 21 00211 11211
2231 0221 201 ε 11 22 01211
1231 302 101 211 01 12 23

02231 202 001 111 221 02 13

303 102 212 011 121 231 03

203 002 112 222 021 131 30301
103 213 012 122 300211 031 20301
003 113 223 022 200211 310211 10301
220201 013 123 301211 100211 210211 00301
120201 230201 023 201211 000211 110211 220211

Observe that the expansions of length at most 3, which are the bold
entries in the table above, are at the positions given by the domain
of w(3) above. Moreover, the values of these entries are precisely the
σ-representations of the corresponding values of w(3) with zeros added on
the right to complete to three digits and, conversely, when we order the
bold face numbers in the table lexicographically, their rank numbers are
presented in w(3).

Example 2.
As second example we consider the flipped Tribonacci substitution

(E2) σ(0) = 01, σ(1) = 20, σ(2) = 0.

The incidence matrix and its inverse are given by

Mσ =





1 1 0
1 0 1
1 0 0



 , M−1
σ =





0 0 1
1 0 −1
0 1 −1



 .

The characteristic polynomial is x3 − x2 − x − 1 and therefore Mσ has the
dominant eigenvalue β ≈ 1.839 and τ = β−1 ≈ 0.544. The normalized
eigenvector of β is again given by ~a = (a0, a1, a2) = (τ, τ2 + τ3, τ2), and
therefore we have Ω = Z[τ ]. By using M−1

σ it is easy to produce the following
list of transition vectors when we take ~c1 = t(1, 0, 0),~c2 = t(1, 1, 0) (compare
with Fig. 2)

n ~a
(n)
0 ~a

(n)
1 ~a

(n)
2

1 t(1, 0) t(−1, 1) t(−1,−1)
2 t(−1,−1) t(2, 1) t(0, 2)
3 t(0, 2) t(−1,−3) t(2,−1)
4 t(2,−1) t(−2, 3) t(−3,−2)
5 t(−3,−2) t(5, 1) t(1, 5)
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The associated automaton is already given in Fig. 5 and the number
system scheme is given by

We have already seen some projected words in Fig. 4, so we discuss
whether the projection of the fixed point is space filling. This time we can-
not argue with the criterion from [1] since the number system is not the
usual β-expansion, which would be the usual Tribonacci expansion. Accord-
ing to Theorem 6 we have to check if all elements x0 + x1τ + x2τ

2 with
‖(x0, x1, x2)‖∞ ≤ 53, where we have

‖B−1‖∞ ≤ 1.111 and M1 = M2 ≤ 2.094 · 2 · 3
0.262

≤ 47.954,

have a finite expansion in L (observe that the remark after Theorem 6 applies
and therefore we have only to check the expansions in the language L). But
already when we consider 1 − τ (cf. table below) and apply the algorithm
we get the expansion (011)ω:

1−τ = τ2+τ3 = τ(τ+τ2) = τ2+(τ2+(τ2+τ4))τ2 = τ ·τ+τ2·τ2+(τ2+τ3)·τ3

and we are back in the starting position. Hence the projected fixed point
will not be space filling (compare with Fig. 6). Below we give a table of all
expansions of f(x1, x2) = x1(τ + τ2) + x2τ mod 1 for −3 ≤ x1 ≤ 3,−3 ≤
x2 ≤ 3 (in the upper part of the table we have the values for −3 ≤ x1 ≤ 1
and the in the lower part the values for 2 ≤ x1 ≤ 3):

00011 1111(011)ω 1101 1001 0111
100001 011001 0(011)ω 0001 1111001
000001 111 11 1 011
011100(011)ω 010001 001 ε 11(011)ω →
111101 110(011)ω 100(011)ω (011)ω 01
011000(011)ω 001101 000(011)ω 1111 11001
1101111 1001111 0111111 010(011)ω 0011

0100001 0001111001
110011 100011
0011001 000011

→ 10(011)ω 01111(011)ω

00(011)ω 111111
10001 01101
00001 11100(011)ω

We remark that it is clear from the main result in [34] that only
ultimately periodic expansions appear (since the dominant root of Mσ is
a Pisot number and Ω ⊆ Q[τ ]). It can be shown that (011)ω is the only
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period which appears in this case.

Example 3.
Let the substitution σ be given by

(E3) σ(0) = 01, σ(1) = 0002, σ(2) = 0.

The incidence matrix and its inverse are

Mσ =





1 1 0
3 0 1
1 0 0



 , M−1
σ =





0 0 1
1 0 −1
0 1 −3



 .

The characteristic polynomial is x3 − x2 − 3x − 1 = (x2 − 2x − 1)(x + 1)
and therefore Mσ has a dominant eigenvalue β = 1 +

√
2. Thus τ = β−1 =

1
5(1 −

√
2) and τ2 + 2τ = 1. The eigenvector of Mσ to β is given by ~a =

(a0, a1, a2) = (τ, τ + τ2, τ). Thus Ω = Z[τ ], but degβ = 1 < k = 2. Using
M−1

σ we get the following list of transition vectors in the canonical case:

n ~a
(n)
0 ~a

(n)
1 ~a

(n)
2

1 t(0, 1) t(0,−1) t(1,−3)
2 t(1,−3) t(−1, 4) t(−3, 8)
3 t(−3, 8) t(4,−11) t(8,−20)
4 t(8,−20) t(−11, 28) t(−20, 49)

The associated automaton is given by

and the associated number system scheme reads

Again the number system has the property (F), since it is the usual β-
expansion and Akiyama’s criterion [1] applies. Thus σ is space filling. In the
canonical case we have (b0, b1, b2) = (1, 1 + τ, τ). Consequently f(x1, x2) =
x1(1+τ)+x2τ mod 1. We take b0 = 1, b1 = 1+τ as a basis for Ω. The kernel
of f is therefore generated by ~x2 = t(x1, x2) = t(−1, 1), since b2 = b1 − b0.
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Therefore, the projected fixed point of σ completely fills Ψ
(
Z2/ ker f

)
=

Z~e
(2)
1 which is therefore the domain of Ψ(Ŵ ).
We give a list of the expansions of f(x1, 0) = x1(1 + τ) mod 1 for −5 ≤

x1 ≤ 8, i.e. the σ-representations of the corresponding numbers above:

13 0111 12 01 11 ε 1 121 011 111 001 101 12121 012

For the canonical projections of the words u(1) = 01, u(2) = 010002 in thin
letter type and their Ψ-images in bold letter type we get

w(1) w(2)

1
0 1

2
5 4 1 3 0 2

3
1

4

5

and for u(3) = 0100020101010 we get

w(3)

4

7
1

9
3

4

6
12 10 2 8 0 6 11 3 9 1 7 4

8
2

10

12
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Observe that the expansions of length at most 3 (the bold entries in the

table above) are exactly those that appear in the domain of Ψ(w(3)).

Example 4.
We consider the substitution defined by

(E4) σ(0) = 01, σ(1) = 2, σ(2) = 3, σ(3) = 4, σ(4) = 0.

We have taken this example from [9, p. 21]. The incidence matrix is

Mσ =









1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0









.

The characteristic polynomial of Mσ is equal to x5 − x4 − 1 = (x3 − x −
1)(x2 − x + 1). Thus, there is a dominant root β ≈ 1.325 which is a cubic
Pisot unit, and a quadratic factor the roots of which have absolute value
equal to 1. We have τ = β−1 ≈ 0.755 and τ3 + τ2 = 1. The eigenvalue of
Mσ to β is

~a = (a0, a1, a2, a3, a4) = (τ, τ5, τ4, τ3, τ2).

Therefore, Ω = Z[τ ]. The associated automaton is

and the associated number system scheme
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By using

M−1
σ =









0 0 0 0 1
1 0 0 0 −1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0









it is easy to get the transition vectors. E.g. we have for n = 11 that

u(11) = 0123400101201230123401234001234001

and

(

~a
(11)
0 ,~a

(11)
1 ,~a

(11)
2 ,~a

(11)
3 ,~a

(11)
4

)

=







0 0 1 −2 1
1 −1 0 1 −2
−2 3 −1 0 1
1 −3 3 −1 0







.

In the canonical case (b0, b1, b2, b3, b4) = (1, τ4, τ3, τ2, τ). We pick b0 =
1, b3 = τ2, b4 = τ as a basis for Ω. Since b1 = −b0 + b3 + b4 and b2 = b0 − b3,
the projection Ψ is given by the vectors ~x1 = t(1, 0,−1,−1), ~x2 = t(0, 1, 1, 0).
In fact

domΨ
(
Ŵ

)
= Ψ

(
Z4/ ker f

)
= Z~e

(4)
3 + Z~e

(4)
4 ,

since the associated number system has the finiteness property. This follows
again by the criterion in [1], since the number system gives the usual β-
expansion. We get

Ψ
(
w(11)

)

33 29 14
7 27 12 32 18 3 23
16 1 21 6 26 11 31

9 30 15 0 20 5 25
19 4 24 8 28 13

17 2 22
10

This roundwalk can be obtained by using the images of the transition
vectors in the (x3, x4)-plane, which are given by

Ψ
(

~a
(11)
0

)

=







0
0
−3
1







, Ψ
(

~a
(11)
1

)

=







0
0
4
−3







, Ψ
(

~a
(11)
2

)

=







0
0
0
4







,

Ψ
(

~a
(11)
3

)

=







0
0
−3
−3







, Ψ
(

~a
(11)
4

)

=







0
0
4
1







.

It can clearly be seen how the plane is filled up. Since (b0, b1, b2, b3, b4) =
(1, τ4, τ3, τ2, τ), the corresponding list of expansions of f(0, 0, x3, x4) =
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x3τ
2 + x4τ mod 1 is given by the following table, where all finite σ-

representations of f(~x) = x3τ
2 + x4τ mod 1 with ~x = (0, 0, x3, x4) and

−4 ≤ x3 ≤ 4,−3 ≤ x4 ≤ 3 are shown (the upper part of the table con-
tains the expansions for −4 ≤ x3 ≤ −2, the middle part the expansion for
−1 ≤ x3 ≤ 1 and the lower part for 2 ≤ x3 ≤ 4):

10000100001 00100001000001 00000001000001
00000100001 10000000001 00010000001

00100000001 00000000001 10000001

0100001000000001 00001000001 10000001 →
1000010000001 00100001 00000001

0000010000001 1000000000001 0001000000001
0010000000001 0000000000001 0100000000001

01000001000001 00001000000001 100000001

100001 0010000001 000000001

000001 1 0001

→ 001 ε 01 ⇒
01000001 00001 1000000001

1000001000001 0010000001 1000000001

0000001000001 0100001000001 0000100001

000100001 100001000001 00100001000000001
010000001 000001000001 100000000001
1000001 001000000001 000000000001

⇒ 0000001 0100001 000010000001
0001000001 100001000000001 001000001000001
0100000001 000001000000001 100000000000001
100000010000001 001000000000001 000000000000001

It can be seen that the expansions of length at most 11, which are again
the bold entries, are exactly at the places of domΨ(w(11)).

Example 5.
Finally let the substitution be defined by

(E5) σ(0) = 02111111, σ(1) = 30, σ(2) = 1000000, σ(3) = 0.

The incidence matrix and its inverse are given by

Mσ =







1 6 1 0
1 0 0 1
6 1 0 0
1 0 0 0







, M−1
σ =







0 0 0 1
0 0 1 −6
1 0 −6 35
0 1 0 −1







.

The characteristic polynomial is equal to x4 − x3 − 12x2 − 7x − 1 = (x2 −
4x − 1)(x2 + 3x + 1) and therefore it has a dominant Pisot root given by
β = 2 +

√
5 and τ =

√
5 − 2. The two roots of the other polynomial are

−1
2(3∓

√
5), which lie on both sides of the unit circle. The eigenvalue of Mσ
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to β is

(a0, a1, a2, a3) = (τ, τ2 + τ3, 6τ2 + τ3 + τ4, τ2).

The associated automaton is

and the number system scheme reads

We have (b0, b1, b2, b3) = (1, τ+τ2, 6τ+τ2+τ3, τ) and by choosing b0, b3 as
a basis we get ~x1 = (1, 0, 3), ~x2 = (0, 1,−19) for the description of the map

Ψ. E.g. the word u(2) = 021111111000000303030303030 and the transition
vectors in the canoncial case are given by

(

~a
(2)
0 ,~a

(2)
1 ,~a

(2)
2 ,~a

(2)
3

)

=





1 −6 35 −1
0 −6 36 1
−1 41 −244 −5





and their projections are

(

Ψ
(

~a
(2)
0

)

, Ψ
(

~a
(2)
1

)

, Ψ
(

~a
(2)
2

)

, Ψ
(

~a
(2)
3

))

=





0 0 0 0
0 0 0 0
−4 −55 335 17



 .

We give a list of σ-expansions of f(0, x2) = τx2 mod 1 for 10 ≤ x2 ≤ 10 (in
the upper part the values −10 ≤ x2 ≤ −3, in the middle part −2 ≤ x2 ≤ 5
and in the lower part the remaining values are shown):

2(13)ω 61 01471 123(13)ω 1671 511 01 1(13)ω →
→ 1571 411471 ε 1 1471 3(13)ω 71 0411471 ⇒
⇒ 1371 2171 611 01571 1271

Indeed the expansions of length at most 2 are at the positions where the
above roundwalk passes. Note that −3τ corresponds to 1(13)ω, since

1 − 3τ = τ · 1 + (τ2 + τ3)τ + (3τ)τ2

= τ · 1 + (τ2 + τ3)τ + (τ + 7τ2 + 2τ3 + τ4)τ2 + τ2τ3 + (3τ)τ4
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and we are back in state 0. Since there are values which have an infinite
expansion, the limit word Ŵ is not space filling.
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