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Abstract. We consider a function field analogue of Thomas’ family
[14] of Thue equations

X
3
− (λ − 1)X2

Y − (λ + 2)XY
2
− Y

3 = ξ,

where the solutions X, Y come from the ring C[T ], the parameter λ ∈

C[T ] is some non-constant polynomial and 0 6= ξ ∈ C. In this paper we
completely solve this family.

1. Introduction and Main Result

The history of Thue equations, these are diophantine equations F (X,Y ) =
m where F ∈ Z[X,Y ] is a binary irreducible form of degree at least 3 and
m is a non zero integer, in particular the study of families of Thue equa-
tions dates back to Thue himself. In his paper [15] he proved that the Thue
equation

(a + 1)Xn − aY n = 1

has only the solution x = y = 1, if a is suitable large in relation to the prime
n ≥ 3. In more recent time Thomas [14] considered the family

(1) X3 − (λ − 1)X2Y − (λ + 2)XY 2 − Y 3 = ±1 (λ ∈ Z).

This was the first time that a family of Thue equations with positive dis-
criminant has been investigated. Thomas [14] and Mignotte [11] solved this
equation completely. It has the solutions ±(1, 0),±(0, 1),±(1,−1) for all
λ ∈ Z and some further solutions for λ = 0, 1, 3. Since then several authors
considered many families of Thue equations up to degree 8 (cf. [6]). A
survey on the subject can be found in [4].

All the families stated above were considered over the ring of rational in-
tegers. Heuberger, Pethő and Tichy solved the first time a family of relative
Thue equations in [5]. In particular they studied Thomas’ family again

(2) X3 − (λ − 1)X2Y − (λ + 2)XY 2 − Y 3 = µ,
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where the solutions x, y, the parameter λ and the root of unity µ now are all
(algebraic) integers in the same imaginary quadratic number field k. They
proved that (2) has only trivial solutions (i.e. with |x|, |y| ≤ 1), if |λ| is
large enough or if the discriminant of the quadratic number field is large
enough or if <λ = −1/2 (there are a few more solutions in this case which
are explicitly listed).

Thue equations were not only considered over number fields but also over
function fields starting with the paper of Gill [3]. In the next 50 years several
authors as Schmidt (cf. [13]) and Mason (cf. [9], resp. [10]) considered the
problem to determine effectively all solutions of a given Thue equation over
some function field. In contrast to the number field case Thue equations
over function fields may have infinitely many solutions. Recently, Lettl [8]
could prove criteria for which a given Thue equation has only finitely many
solutions. In all these investigations no families of Thue equations were
considered. Recently, the authors could solve the family

X(X − Y )(X − (T + ξ)Y ) + Y 3 = 1 + ξT (1 − T )

over C[T ] for all ξ ∈ C (cf. [2]). This was the first time that a family of
Thue equations over a function field was solved.

In this paper we will go a step further and consider a family, where the
parameter itself is a polynomial. In particular we revisit Thomas’ family
and we completely solve the equation

(3) X3 − (λ − 1)X2Y − (λ + 2)XY 2 − Y 3 = ξ,

where λ ∈ C[T ] is a non-constant polynomial and ξ ∈ C
× (which denotes

as usually the unit group and in this case is just C\{0}). This family can
be seen as a function field analogue of the Thue equations (1) and (2),
respectively. In all three cases the solutions x, y and the parameter λ come
from the same commutative ring R, namely Z, ok and C[T ], respectively,
and the right hand side is a unit in R (we denote by ok the maximal order
of some number field k).

The aim of this paper is to prove the following main theorem:

Theorem 1. If (x, y) ∈ C[T ] × C[T ] is a solution of the Thue equation

X3 − (λ − 1)X2Y − (λ + 2)XY 2 − Y 3 = ξ,

with non-constant λ ∈ C[T ] and ξ ∈ C
×, then

(x, y) ∈ L :=
{

(ζ, 0), (−ζ, ζ), (0,−ζ) : ζ3 = ξ
}

.

Observe that the result contains all the (infinite) polynomial families of
solutions found by Thomas [14] in his original paper and by Heuberger,
Pethő and Tichy in [5] (see Table 1, page 438). So, our main theorem
gives once again all the polynomial solutions in these cases and therefore
we proved one part of what Thomas calls stable growth, which means that a
family of Thue equations has only finitely many polynomial solutions plus
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finitely many sporadic ones (which means solutions for certain values of the
parameter).

The rest of the paper is organized as follows. Section 2 provides a col-
lection of useful facts on function fields and auxiliary results that we need
to prove Theorem 1. In Section 3 we compute ramification indices and the
genus of the function field C(T )(α), where α is a root of X 3 − (λ − 1)X2 −
(λ+2)X −1. These computations yield an upper bound for HK(x−αy) (cf.
Section 4). The structure of the relevant unit group is studied in Section 5.
Finally, we prove our main theorem in Section 6.

2. Preliminaries and auxiliary Results

Let us first remind the ABC-Theorem for function fields (see e.g. [12,
Theorem 7.17]).

Proposition 1 (ABC-Theorem). Let K be a function field of characteristic

0 and genus gK. Let u, v ∈ K× satisfying u + v = 1 and put A = (u)0,

B = (v)0 and C = (u)∞ = (v)∞, where (·)0 denotes the zero divisor and

(·)∞ denotes the polar divisor. Then

deg A = deg B = deg C ≤ max



0, 2gK − 2 +
∑

P∈Supp(A+B+C)

degK P



 .

If the constant field k is algebraically closed and of characteristic 0, Mason
[10, chapter 1, Lemma 2] proved following special case.

Corollary 1. Let H(f) := −
∑

v∈MK
min(0, v(f)) denote the height of an

element f ∈ K and let γ1, γ2, γ3 ∈ K with γ1 +γ2 +γ3 = 0. Let V be a finite

set of valuations such that for all v 6∈ V we have v(γ1) = v(γ2) = v(γ3), then

H(γ1/γ2) ≤ max(0, 2g − 2 + |V|).

Here we denote the set of all valuations in K by MK . Usually, MK denotes
the set of places of some field K. Since in the function field case valuations
and places are one-to-one we use this notation. It is rather easy to deduce
Corollary 1 from Proposition 1 (cf. [2]).

If F (X,Y ) = m is a Thue equation over the integral closure OL of k[T ] in
some function field L/k(T ), then Mason [9] could prove an effective bound
for the height of solutions (x, y) to F (X,Y ) = m by using his fundamental
inequality presented in Corollary 1. Observe that the integral closure of k[T ]
consists of all elements in L that may only have negative valuations above
∞. Let us remind Mason’s bound on the height of the solutions.

Proposition 2 (Mason). Let

F (X,Y ) := (X − α1Y ) · · · (X − αdY ) = m

be a Thue equation over the integral closure OL of k[T ] of some function

field L/k(T ) with algebraic closed constant field and characteristic 0. Then
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all solutions (x, y) ∈ O2
L satisfy

H(x, y) ≤ 8H + 2gL + r − 1,

where gL is the genus of L, r is the number of infinite valuations and H
denotes the height of the polynomial (X − α1) · · · (X − αd)/m.

In order to compute the genus of some function field we will use the
Riemann-Hurwitz Theorem (see e.g. [12, Theorem 7.16])

Proposition 3 (Riemann-Hurwitz). Let L/K be an extension of function

fields of characteristic 0 and let gK and gL be the genus of K and L, respec-

tively, then

(4) 2gL − 2 = [L : K](2gK − 2) +
∑

w∈ML

ew − 1,

where ML is the set of valuations of L and ew denotes the ramification index

of w in the extension L/K.

Let us fix for the rest of the paper some notations.

Fλ(X,Y ) :=X3 − (λ − 1)X2Y − (λ + 2)XY 2 − Y 3,(5)

fλ(X) := Fλ(X, 1) :=X3 − (λ − 1)X2 − (λ + 2)X − 1,(6)

where λ ∈ C[T ] is some non-constant polynomial. We denote the degree of
λ by a := deg λ > 0. Let α := α1 be a root of fλ and let α2 and α3 be the
conjugates of α. Then K := C(T )(α) is a finite extension of the function
field C(T ). Observe that we have the identities

Fλ(Y,−(X + Y )) = Fλ(−(X + Y ), X) = Fλ(X,Y ) and

fλ

(

−1 −
1

X

)

=
fλ(X)

X3
.

Therefore,

α2 = −1 −
1

α
and α3 = −1 −

1

α2
= −

1

α + 1
.

Observe that fλ is irreducible over C(T ), since otherwise one of the roots
would be in C[T ] (because all the root are integral over C[T ]), which con-
tradicts the fact that the constant term of fλ is −1, unless this root is in
C\{0}. But this implies by the above formulas that all roots are in C, which
is clearly not possible. Consequently, K is the splitting field of fλ and hence
a Galois extension of C(T ). Furthermore, the Galois group is the cyclic
group with three elements. We collect these facts in the following

Lemma 1. The extension K/C(T ) is a Galois extension. In particular the

Galois group G of K/C(T ) is isomorphic to the cyclic group C3 with three

elements.
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Further, we denote by (x, y) ∈ C[T ]×C[T ] some solution to Fλ(X,Y ) = ξ
with ξ ∈ C

× and we define

αi,j := αi − αj , βi := x − αiy, γi,j,k := βiαj,k,

and we write β := β1 = x − αy. The polynomial Fλ may be expressed as
Fλ(X,Y ) = NK/C(T )(X −αY ), where NK/C(T ) denotes the norm from K to

C(T ). From this norm notation we deduce βi ∈ C[T ][α]×.
Note that since C is algebraically closed all discrete valuation rings with

quotient field C(T ) are isomorphic to Oa := {f(T )/g(T ) : f(T ), g(T ) ∈
C[T ], g(a) 6= 0} for some a ∈ C or O∞ := {f(T )/g(T ) : f(T ), g(T ) ∈
C[T ],deg f ≤ deg g}. Valuations corresponding to Oa are denoted by va

(finite valuations) and the valuation corresponding to O∞ is denoted by
v∞ (infinite valuation). To simplify notations we will use the following
definition.

Definition 1. Let L/C(T ) be an extension of degree d, f ∈ L and for each

a ∈ C ∪ {∞} let us fix a d-tuple (w1, . . . , wd) of valuations in L with wi|va

for i ∈ {1, . . . , d}, where the valuations are used with multiplicity, i.e. a

valuation with ramification index e is written down e times. Let us define

(·)a : L → Z
d, f 7→ (f)a := (w1(f), . . . , wd(f)).

In the next lemma we calculate all valuations of the quantities α1, α2, α3,
respectively, in the function field K/C(T ).

Lemma 2. We have

(α1)∞ = (a, 0,−a), (α2)∞ = (0,−a, a), (α3)∞ = (−a, a, 0)

and (αi)a = (0, 0, 0) for a ∈ C and i = 1, 2, 3, where a = deg λ.

Proof: Let us first consider the infinite valuations. We compute αi as formal
Laurent series in λ and obtain

α1 =λ + 1 +
1

λ
−

3

λ2
+ · · · = λaT

a + · · · ,

α2 = − 1 −
1

λ
+

1

λ2
+ · · · = −1 − · · · ,

α3 = −
1

λ
+

2

λ2
+ · · · = −

1

λa

T−a + · · · ,

where λa denotes the leading term of λ. From the expansion above we
obtain the first part of the lemma by using a suitable triple of the infinite
valuations. The second part is immediate, since α1, α2 and α3 are integer
units in K. �

3. Ramification

In this section we compute, which places are ramified in the extension
K/C(T ). Since K/C(T ) is Galois, the ramification indices ew may only take
the value 1 (unramified) or 3 (ramified). Hence,it suffices to know how often



6 C. FUCHS AND V. ZIEGLER

ramification occurs in order to compute the genus gK of K using Proposition
3. Let us first prove

Lemma 3. If w ∈ MK is ramified then w|va, where a ∈ C such that a is a

root of δ := λ2 + λ + 7 ∈ C[T ].

Proof: Assume K is not ramified at a valuation that lies over va with
a 6= ∞. By Puiseux’s Theorem [1, 7] there exists a formal Power series

α(T ) :=

∞
∑

n=0

an(T − a)n

such that fλ(α(T )) = 0. On the other hand it is well known that given an

equation f(X,T ) = 0 with f holomorphic and ∂f
∂X

∣

∣

∣

T=a
6= 0, then there exists

a holomorphic function X(T ) =
∑∞

n=0 an(T − a)n in an open neighborhood
U ⊂ C of a, such that f(X(T ), T ) = 0. We conclude that ramification over
va may only occur if

∂fλ

∂X

∣

∣

∣

∣

T=a

= 3X2 − 2X(λ(a) − 1) − (λ(a) + 2) = 0 and

fλ(X)|T=a = X3 − X2(λ(a) − 1) + X(λ(a) + 2) − 1 = 0

or equivalently fλ|T=a has a multiple zero. This is δ(a) := δ|T=a = λ(a)2 +
λ(a) + 7 = 0.

We are left to prove that v∞ is not ramified. Since the infinite valuations
of K have different values α by Lemma 2, these are different and thus un-
ramified over C(T ). �

Corollary 2. If r is the number of ramified valuations in K/C(T ) then

gK = r − 2 ≤ 2a − 2.

Proof: For the proof we utilize Proposition 3. We already know that if
w ∈ MK is ramified then ew = 3. Moreover, the genus of C(T ) is zero. With
this data we obtain

2gK − 2 = 3(0 − 2) + (3 − 1)r = 2r − 6,

hence, gK = r − 2. By Lemma 3 we therefore have gK = r − 2 ≤ 2a − 2. �

4. Upper bound for the height of β

In order to solve equation (3) we have to compute all values of β = x−αy
that solve the norm equation

(7) NK/C(T )(β) = ξ (ξ ∈ C
×).

Note that β is a unit of C[T ][α]. A first step is to bound the height of β,
which will be done in this section.
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Lemma 4. We have

HK

(

γ1,2,3

γ2,3,1

)

≤ 6a − 3.

Proof: It is well known that

γ1,2,3 + γ2,3,1 + γ3,1,2 = 0

(Siegel’s Identity), hence by Corollary 1 we have

HK

(

γ1,2,3

γ2,3,1

)

≤ max(0, 2gK − 2 + |V|).

Let r be the number of ramified places, then gK = r − 2 (cf. Corollary 2).
Since γi,j,k with pairwise distinct i, j, k ∈ {1, 2, 3} may only have non zero
valuations at places w with w|va, where a ∈ {k ∈ C : δ(k) = 0} ∪ {∞}, we
have |V| ≤ r + 3(2a − r) + 3. This yields

HK

(

γ1,2,3

γ2,3,1

)

≤ 2r − 4 − 2 + r + 3(2a − r) + 3 = 6a − 3.

�

Next, we want to compute an upper bound for HK(β1/β2). Let us denote
by

Ha(α) := −
∑

w|va

min(0, w(α)), a ∈ C ∪ {∞}

the local height. Obviously, we have

(8) HK(α) =
∑

a∈C∪{∞}

Ha(α).

From equation (8) one computes

HK

(

γ1,2,3

γ2,3,1

)

=
∑

δ(a)=0

Ha

(

α2,3

α3,1

)

+ H∞

(

γ1,2,3

γ2,3,1

)

≥H∞

(

β1

β2
·
α2,3

α3,1

)

≥H∞

(

β1

β2

)

− H∞

(

α3,1

α2,3

)

.

(9)

By Lemma 2 we obtain
(

α3,1

α2,3

)

∞
= (0, a,−a), hence

HK

(

β1

β2

)

= H∞

(

β1

β2

)

≤ HK

(

γ1,2,3

γ2,3,1

)

+ H∞

(

α3,1

α2,3

)

≤ 7a − 3.

Let us now compute HK(β). Since βi ∈ C[T ][α]×, with i = 1, 2, 3, we
only have to consider infinite valuations. After a suitable permutation of
valuations we may assume

(β1)∞ = (−b1,−b2,−b3)
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where b1 ≥ b2 ≥ b3. Therefore, the indices of the conjugates of β1 are fixed.
By Lemma 1 we either have (case 1)

(β2)∞ = (−b3,−b1,−b2)

(β3)∞ = (−b2,−b3,−b1)

or (case 2)

(β2)∞ = (−b2,−b3,−b1)

(β3)∞ = (−b3,−b1,−b2)

which implies that

(β1/β2)∞ =

{

(b3 − b1, b1 − b2, b2 − b3) (case 1),
(b2 − b1, b3 − b2, b1 − b3) (case 2).

Consequently, we get

HK(β1/β2) =

{

b1 − b3

b1 − b2 − b3 + b2 = b1 − b3

}

= b1 − b3.

Since HK(β) = HK(β−1) we may also assume b1 ≥ b2 ≥ 0. From b1 + b2 +

b3 = 0 we deduce −b3 = b1 + b2 ≤ 2b1, hence −b3
2 ≤ b1. This yields

3

2
HK(β) = −

3

2
b3 ≤ b1 − b3 = HK(β1/β2) ≤ 7a − 3,

hence following Proposition:

Proposition 4. We have HK(β) ≤ 14
3 a − 2.

We remark that by using Proposition 2 directly we get the weaker result
that if (x, y) is a solution to (3) then

max(deg x,deg y) ≤
28a − 2

3
.

This can be obtained just by computing H = HK(fλ), since K is the splitting
field of fλ:

H = max (HK(1),HK(λ − 1),HK(λ + 2),HK(−1)) = 3a,

where HK denotes the height with respect to the function field K. Now
r = 3 by Lemma 3 and gK ≤ 2a − 2 by Corollary 2, hence,

max(HK(x),HK(y)) ≤ 24a + 4a − 4 + 3 − 1 = 28a − 2.

Since x, y ∈ C[T ] we have 3 deg x = HK(x), 3 deg y = HK(y), respectively,
and therefore the claimed bound.
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5. Unit structure

Since β ∈ C[T ][α]× we have to investigate this unit group. The aim of
this section is to prove the following precise description of this group

Proposition 5. The units α1 and α2 form a fundamental system, so C[T ][α]× =
C〈α1, α2〉, i.e. for every ε ∈ C[T ][α]× we have

ε = ηαx
1αy

2,

where η ∈ C and x, y are integers.

In order to prove Proposition 5 we consider first the following Lemma.

Lemma 5. Let ε ∈ C[T ][α]× then either HK(ε) ≥ a or ε ∈ C
×.

Proof: Let ε1, ε2, ε3 elements of K with (ε1)∞ = (a1, b1, c1), (ε2)∞ =
(a2, b2, c2) and (ε3)∞ = (a3, b3, c3). We will write by abuse of language
(a1, b1, c1) ◦ (a2, b2, c2) = (a3, b3, c3), if ε1 ◦ ε2 = ε3, where ◦ = +,−, ·. A
computation (if ◦ = +,− and e.g. a1 = a2) may not be unique in this vector
notation. In this case we place a ? at that component.

Let ε ∈ C[T ][α]× and (ε)∞ = (e1, e2, e3). Since HK(ε) = HK(εi) =
HK(ε−1

i ) with i = 1, 2, 3 and where εi are the conjugates of ε, we may
assume e1, e3 ≥ 0 and e2 < 0. We may exclude e2 = 0, since otherwise ε
would be constant. We have

(10) εi = h0 + h1αi + h2α
2
i (1 ≤ i ≤ 3),

with h0, h1, h2 ∈ C[T ]. Solving this linear system by Cramer’s rule one
obtains

h0 =
ε1α2α3(α3 − α2) + ε2α3α1(α1 − α3) + ε3α1α2(α2 − α1)

δ
,

h1 =
ε1(α2 + α3)(α2 − α3) + ε2(α3 + α1)(α3 − α1) + ε3(α1 + α2)(α1 − α2)

δ
,

h2 =
ε1(α3 − α2) + ε2(α1 − α3) + ε3(α2 − α1)

δ
,

(11)

where

δ = det(αi−1
j )1≤i,j≤3 = (α1 − α2)(α2 − α3)(α3 − α1) = λ2 + λ + 7 ∈ C[T ]

is the discriminant of fλ.
Let us assume h0 6= 0. We want to compute deg h0. Using the vector

notation we obtain

(α2α3(α3−α2))∞ = (0,−a, a)(−a, a, 0)((−a, a, 0)−(0,−a, a)) = (−2a,−a, a)

and

(δ)∞ = (−2a,−2a,−2a),

hence

(h0)∞ = (e1, a + e2, 3a + e3) + · · · ,
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where the other summands are the conjugates of the first summand. We
have 0 ≥ −deg h0 ≥ min(e1, e2 +a). But min(e1, e2 +a) ≤ 0, if either e1 = 0
and HK(ε) = −e2 < a or HK(ε) = −e2 ≥ a. So either the Lemma is true or
h0 ∈ C.

If h0 ∈ C one has HK(ε) = HK(h1α + h2α
2). Therefore, without loss of

generality we may assume that h0 = 0. Let us assume now h1 6= 0, h2 6= 0
and furthermore, deg h1 = h1 and deg h2 = h2. Since ε = α(h1 + h2α), we
have

(ε)∞ = (a, 0,−a) ((−h1,−h1,−h1) + (a − h2,−h2,−a − h2)) .

We distinguish between the two cases h1 6= a + h2 and h1 = a + h2. In
the first case we have (ε)∞ = (?, ?,min(−h1,−a − h2) − a), hence HK(ε) ≥
max(h1, h2 + a) + a ≥ a. In the second case we obtain (ε)∞ = (?,−h1, ?),
hence HK(ε) ≥ h1 = h2 + a ≥ a.

We are left to the case h1 = 0 or h2 = 0 and obtain

(ε)∞ =(2a, 0,−2a)(−h2 ,−h2,−h2) = (?, ?,−2a − h2) or

(ε)∞ =(a, 0,−a)(−h1 ,−h1,−h1) = (?, ?,−a − h1),

i.e. in both cases HK(ε) ≥ a. �

Corollary 3. There does not exist a rational integer k with |k| > 1 and

a unit ε ∈ C[T ][α]× such that α = εk. Furthermore, there exists a unit

ε ∈ C[T ][α]× such that α and ε form a fundamental system, i.e. C[T ][α]× =
C〈α, ε〉.

Proof: The first part is obvious, since if such k and ε would exist, then
0 < HK(ε) < a, a contradiction to Lemma 5.

Suppose now (ε1, ε2) is a fundamental system such that k > 0 is minimal
with ξεk

1ε
l
2 = α and ξ ∈ C

×. Now k = lq+r with 0 ≤ r < l and (ε1, ε = εq
1ε2)

is again a fundamental system, such that ξεr
1ε

l = α. Since we assume k is
minimal, we have r = 0 and from the first part of the Corollary we deduce
l = 1, hence (α, ε) is a fundamental system. �

Now, Proposition 5 follows easily from Lemma 5 or from Corollary 3.

Proof of Proposition 5: Suppose ε is a unit with (ε)∞ = (e1, e2, e3).
Multiplying with appropriate powers of α1 and α2 one obtains a unit ε′

with (ε′) = (e′1, e
′
2, e

′
3) and 0 ≤ e′1 < a and −a < e′2 ≤ 0. But now

HK(ε′) = − min{0, e′1} − min{0, e′2} − min{0,−(e′1 + e′2)}

= − e′2 + max{0, e′1 + e′2} = max{e′1,−e′2} < a

implies by Lemma 5 that ε′ must be a constant. From this Proposition 5
follows immediately. �



THOMAS’ FAMILY OVER FUNCTION FIELDS 11

Corollary 4. Let ε ∈ C[T ][α]×, then HK(ε) = na for some n ∈ Z.

Proof: From Proposition 5 we now may deduce that all components of (ε)∞
are divisible by a, hence the Corollary follows. �

6. End of the proof

By Proposition 4 every solution β ∈ C[T ][α]× to (7) satisfies HK(β) ≤
4.67a − 2. Furthermore, we know from Proposition 5 that

β = ζ (α1)
a1 (α2)

a2 ,

where ζ ∈ C× and a1, a2 ∈ Z. These two propositions together yield
|a1|, |a2| ≤ 4 and |a1 − a2| ≤ 4. By computing all possibilities (there are
exactly 61 such pairs (a1, a2)), we see that only for (a1, a2) ∈ E , where

E = {(1, 1), (0, 0), (1, 0)},

we get a β which has the form x − αy with x, y ∈ C[T ], This yields β ∈
L′ := {ζ(−1 − α), ζ, ζα : ζ ∈ C

×}. Consequently, we have

NK/C[T ](β) = ζ3 = ξ (β ∈ L′)

and therefore finally Theorem 1. �
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