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Abstract. In this paper we completely solve a family of Thue inequal-
ities defined over the field of functions C(T ), namely

deg
`

X
4
− 4cX

3
Y + (6c + 2)X2

Y
2 + 4cXY

3 + Y
4
´

≤ deg c,

where the solutions x, y come from the ring C [T ] and the parameter
c ∈ C [T ] is some non-constant polynomial.
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1. Introduction

Let F ∈ R [X, Y ] be binary irreducible form of degree d ≥ 3 over some
ring R. An equation of the form

F (X, Y ) = m, m ∈ R×

is called a Thue equation, due to Thue [22] who proved, in the case R = Z,
that such an equation has finitely many solutions. In the last decade, starting
with the result of Thomas in [21], several families (at the moment up to
degree 8; see [9] and the references mentioned therein) of Thue equations
have been considered, where the coefficients of the form Fc(X, Y ) depend on
an integral parameter c in R = Z or the integral closure of Z in an imaginary
quadratic number field.

It is due to Gill [8] and later Schmidt [19] and Mason [14, 15] that single
Thue equations can also be solved effectively over function fields. Recently,
Lettl gave some new insights in this subject (cf. [11, 12]). However, no family
of Thue equations over function fields was considered by these authors. Very
recently, some families of Thue equations with parameter c ∈ C[T ] were
studied by Ziegler and the first author. These were the first such results
over function fields. In [6] all solutions (x, y) ∈ C[T ] × C[T ] of the family

X3 − (T + ξ + 1)X2Y + (T + ξ)XY 2 + Y 3 = −ξT 2 + ξT + 1
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for all ξ ∈ C were found, namely {ζ(T, 1) : ζ3 = 1} with some additional
solutions for ξ = −1, 0, 1 (see [6]). Moreover, in [7], all solutions of the
function field analogue of Thomas’ family [21]

X3 − (c − 1)X2Y − (c + 2)XY 2 − Y 3 = ξ,

where c ∈ C[T ] is a non-constant polynomial and ξ ∈ C× := C\{0}, were
calculated. We have that all solutions (x, y) ∈ C[T ] × C[T ] are contained in
{(ζ, 0), (−ζ, ζ), (0,−ζ) : ζ3 = ξ}. In the proof we essentially followed the
ideas of Mason [14].

Apart from families of Thue equations also Thue inequalities

|F (X, Y )| ≤ m

over R = Z, where studied previously, but up to now only few parametrized
inequalities of small degree have been solved (see [17, 13, 25, 26, 27]). We
mention a result of Dujella and the second author (see [4]), who proved that
the only primitive (i.e. with coprime components) solutions of the Thue
inequality

|X4 − 4cX3Y + (6c + 2)X2Y 2 + 4cXY 3 + Y 4| < 6c + 4

where c ≥ 4 is an integer, are (x, y) ∈ {(±1, 0), (0,±1), (1,±1), (−1,±1),
(±1,∓2), (±2,±1)} (see also [3]). In [10] the second author jointly with
Ziegler, generalized this result by considering the analogue family of equa-
tions over imaginary quadratic number fields.

In the present paper, we will consider a function field analogue of the
family of Thue inequalities considered above, namely

(1) deg
(

X4 − 4cX3Y + (6c + 2)X2Y 2 + 4cXY 3 + Y 4
)

≤ deg c,

where solutions x, y come from the ring C [T ] and the parameter c ∈ C [T ]
is some non-constant polynomial.

First observe that the problem is trivial for solutions (x, y) ∈ C[T ]×C[T ]
with deg x = deg y = 0, since all (x, y) ∈ C2 give solutions to the Thue
inequality since in this case x4 − 4cx3y + (6c + 2)x2y2 + 4cxy3 + y4 is a
polynomial of degree ≤ deg c. Therefore we restrict to solutions (x, y) ∈
(C[T ] × C[T ])\C2. Our main result is now the following theorem.

Theorem 1. The set of solutions L ⊆ (C[T ] × C[T ])\C2 of the family of
Thue inequalities

deg
(

X4 − 4cX3Y + (6c + 2)X2Y 2 + 4cXY 3 + Y 4
)

≤ deg c,

where c ∈ C[T ] is a non-constant polynomial, is given by

L =
{

(a, 0), (0, a), (2a, a), (a,−2a) : a ∈ C[T ] with 0 < 4 deg a ≤ deg c
}

.

Clearly, the Thue inequality (1) can be rewritten as

(2) X4−4cX3Y +(6c+2)X2Y 2+4cXY 3+Y 4 = m, where deg m ≤ deg c.
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We collect the solutions of (1) from Theorem 1 according to the correspond-
ing right-hand side m of the equation (2) in the following table (where as
above a ∈ C[T ] with 0 < 4 deg a ≤ deg c):

m (x, y) ∈ L
a4 (a, 0), (0, a)

25a4 (2a, a), (a,−2a)

The novelty of this result is threefold. Firstly it is the first parametrized
family of Thue inequalities over function fields solved up to now. Secondly
if we look at the corresponding families of Thue equations, which are solved
with this family, then it is the family of the largest degree considered yet
(up to now only cubic families were considered, whereas we have a quartic
family). Last but not least the method of proof is completely different from
the way the results in [6, 7] are obtained as we will describe below.

In order to attack the inequality we will use a reduction method, which
origins in the method of Tzanakis [24], and show that inequality (6) corre-
sponds to systems of the form

(2c + 1)U2 − 2cV 2 = m,(3)

(c − 2)U2 − cZ2 = −2m.(4)

where deg m ≤ deg c. This will be done in Section 2, where we will also give
some information about the splitting field of the form associated with the
Thue equation.

In the proof we will also use that there are lots of analogues between C [T ] ,
C (T ) , C

((

T−1
))

and Z, Q, R, respectively. Especially, one can consider

continued fraction expansion of an element in C
((

T−1
))

. Namely, we have -

as in classical theory - that each element in C
((

T−1
))

has a unique continued
fraction expansion and an expansion of an element is finite if and only if the
element is in C (T ) . We will give an overview about the theory of continued
fractions for algebraic functions and prove some auxiliary results in Section
3.

In Section 4 we will use the theory of continued fractions in order to de-
termine all values of m with deg m ≤ deg c, for which system (3) and (4) has
a solution. In particular, a characterization in terms of continued fractions
of α ∈ C

((

T−1
))

of all rational functions P/Q satisfying the inequality

∣

∣

∣
α − P

Q

∣

∣

∣
<

1

|Q|2

(see Proposition 1 in Section 3) is used.
After that (in Section 5) we apply the congruence method, which was first

used in this context in [5] (see also [2]), to show that system (3) and (4) has
only trivial primitive (i.e. with coprime components) solutions (U, V, Z) =
(±ζ,±ζ,±ζ) for some ζ ∈ C× (cf. Corollary 1).

Finally, the proof of the main theorem will be completed in Section 6.



4 CLEMENS FUCHS AND BORKA JADRIJEVIĆ

2. Preliminaries and reduction to a system of inequalities

We consider the field of rational functions C (T ) with the following valu-
ation:

v

(

P

Q

)

= deg P − deg Q, P, Q ∈ C [T ] , Q 6= 0,

where we put v (0) = −∞. This valuation can be extended to a valuation
on the field of formal Laurent series C

((

T−1
))

by

v

( ∞
∑

i=n

aiT
−i

)

= −n, an 6= 0.

With

(5) |α| = bv(α),

where b ≥ 2 is an integer and α ∈ C
((

T−1
))

, we get a non-archimedian

absolute value on C
((

T−1
))

. In this notation our inequality (1) has the
form

(6)
∣

∣X4 − 4cX3Y + (6c + 2)X2Y 2 + 4cXY 3 + Y 4
∣

∣ ≤ |c| .
First we state some easy to prove facts about the underlying algebraic

structure of the form F (X, Y ) = X4−4cX3Y +(6c+2)X2Y 2+4cXY 3+Y 4.
We consider

f(X) = F (X, 1) = X4 − 4cX3 + (6c + 2)X2 + 4cX + 1.

The zeros of f(X) = 0 are given by

α1 = c +
√

c(c − 2) +

√

c(c +
1

2
) +

√

(c − 2)(c +
1

2
),

α2 = c −
√

c(c − 2) +

√

c(c +
1

2
) −

√

(c − 2)(c +
1

2
),

α3 = c +
√

c(c − 2) −
√

c(c +
1

2
) −

√

(c − 2)(c +
1

2
),

α4 = c −
√

c(c − 2) −
√

c(c +
1

2
) +

√

(c − 2)(c +
1

2
).

Therefore, the splitting field of f is

C

(

T,
√

c(c − 2),

√

c(c +
1

2
)

)

= C(T )(α1) =: L.

The field extension L/C(T ) is a Galois extension and the Galois group is iso-
morphic to C2 × C2. Moreover, by using the Hurwitz formula [23, Theorem
III.4.12, page 88] the genus gL of L/C(T ) is bounded by gL ≤ 9

2 deg c − 3,
since all places in L that are ramified over finite places va in the rational func-
tion field satisfy 2c3(a)−3c2(a)−2c(a) = 0. From what we have collected up
to now it is rather easy to prove, by using the theorem of Mason mentioned
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above (cf. [15, Chapter 1, Lemma 2]), that every solution (x, y) ∈ C[T ]×C[T ]
of our inequality (6) satisfies max{deg x,deg y} ≤ 41

4 deg c − 3
4 .

As mentioned in the introduction we will use another method of proof to
obtain our result. We consider Thue equation (2), that was

X4 − 4cX3Y + (6c + 2)X2Y 2 + 4cXY 3 + Y 4 = m,

where solutions x, y come from the ring C [T ], parameter c is some non-
constant polynomial and m ∈ C [T ] where |m| ≤ |c|. We want to show how
the solutions of the family of Thue equations (2) over the function field C(T )
corresponds to the solutions of the system (3) and (4) of Pellian equations
over the same function field.

It is clear that every solution (x, y) ∈ C [T ] × C [T ] of Thue equation (2)
yields a solution of the system

(2c + 1)U2 − 2cV 2 = m,

(c − 2)U2 − cZ2 = −2m.

where

(7) U = x2 + y2, V = x2 + xy − y2, Z = −x2 + 4xy + y2,

because to show this we just have to insert U, V, Z in the system of Pellian
equations and we see that both equations reduce to the original Thue equa-
tion. In fact this can be done by the same computations as in [4], since these
computations are still valid in C [T ]. Therefore, L (by the transformation
(7)) is contained in the set of solutions of (3) and (4). Conversely, if U, V, Z
is a solution of the system of Pellian equations we have to find all solutions
of the system (7), to get all possible corresponding solutions of the Thue
equation.

We mention that this relationship was also used by Dujella and Jadrijević
in [4] and that there it was found by using the method of Tzanakis [24].

3. Continued fractions

In this section we will recall the theory of continued fraction expansion
for algebraic functions in C(T ). First of all, we will start with definitions and
some notation. Everything here holds also over an arbitrary field instead of
the field of complex numbers C. For details see [16] and [20].

We define rational functions in polynomials A0, A1, ... ∈ C [T ] by

[A0] = A0, [A0, A1] = A0 +
1

A1
,

[A0, A1, ..., An] = [A0, A1, ..., An−2, An−1 + 1/An] , for n ≥ 2

Then

[A0, A1, ..., An] = [A0, A1, ..., Am−1, [Am, ..., An]] .

Setting P−2 = 0, Q−2 = 1, P−1 = 1, Q−1 = 0,

Pn = AnPn−1 + Pn−2, Qn = AnQn−1 + Qn−2, n ≥ 0,
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we observe that Pn, Qn are polynomials, that

(8) QnPn−1 − PnQn−1 = (−1)n , n ≥ −1,

and

(9) [A0, A1, ..., An] =
Pn

Qn
.

An element of C (T ) may be uniquely expressed as [A0, A1, ..., An] = Pn/Qn,
where each Ai ∈ C [T ] and where deg Ai ≥ 1 for i ≥ 1. By (8), the polynomi-
als Pn, Qn ∈ C [T ] are relatively prime, i.e. (Pn, Qn) = 1. Note that the pair
Pn, Qn is determined by (9) and is relatively prime only up to a common
factor in C×, i.e. ζPn, ζQn with ζ ∈ C× have the same properties. When
A0, A1, ... ∈ C [T ] are given with deg Ai ≥ 1 for i ≥ 1, then [A0, A1, ..., An]
as n → ∞ converges with respect | · | is the norm associated to the non-
archimedean absolute value on C

((

T−1
))

(as given by (5)), to an element of

C
((

T−1
))

which will be denoted by

[A0, A1, A2, . . .] = A0 +
1

A1 +
1

A2 + . . .

.

Then we have that: Every element α ∈ C
((

T−1
))

\C (T ) can be uniquely
expressed as such an infinite continued fraction. Moreover, precisely the el-
ements from C(T ) have a finite expansion.

Writing α = [A0, A1, ...] , we call Pn

Qn
as given by (9) the nth convergent, An

the nth partial quotient and αn = [An, An+1, . . .] the nth complete quotient.
We have

α = [A0, A1, ...An−1, αn] =
αnPn−1 + Pn−2

αnQn−1 + Qn−2
, n ≥ 1.

Legendre’s theorem is also valid for this continued fraction expansion of
elements of C((T−1)), namely we have:

Proposition 1. Let α be an element in C
((

T−1
))

. If P, Q ∈ C [T ] are
nonzero polynomials, (P, Q) = 1 satisfying the inequality

∣

∣

∣
α − P

Q

∣

∣

∣
<

1

|Q|2
,

then there exists n ≥ 0 such that

P

Q
=

Pn

Qn
,

where Pn

Qn
denotes the nth convergent of α.

Proof. This result can be found in [16]. ¤
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For each α ∈ C
((

T−1
))

we write bαc for the polynomial part of α and
{α} = α − bαc for the fractional part of α, i.e. for

α =

∞
∑

i=n

aiT
−i with ai ∈ C,

the polynomial part and the fractional part are

bαc =
0

∑

i=n

aiT
−i, {α} =

∞
∑

i=1

aiT
−i,

respectively. The above algorithms for obtaining the partial quotients can
be reformulated in A0 = bαc, B0 = {α} and An = bB−1

n−1c, Bn = {B−1
n−1} for

all n ≥ 1.
An infinite continued fraction [A0, A1, ...] is called periodic if there are

integers k ≥ 0, m ≥ 1 such that An+m = An for all n ≥ k. Thus a periodic
continued fraction can be written in the form

[

A0, A1, .., Ak−1, Ak, Ak+1, ..., Ak+m−1

]

,

where the bar over Ak, Ak+1, ..., Ak+m−1 indicates that this block of poly-
nomials is repeated indefinitely.

In the classical theory of continued fraction expansions exactly the qua-
dratic irrationals have a periodic expansion. This is not true for the con-
tinued fraction algorithm over C(T ). Nevertheless, if we have a periodic
expansion then we can calculate it in the usual way, which we will show
below.

Let α ∈ C
((

T−1
))

be an algebraic element of degree 2 over C (T ) , then α
is said to be quadratic irrational. In this case α has the form

α =
A + ∆

B
,

with A, B ∈ C [T ] , B 6= 0 and ∆2 = D ∈ C [T ] and B|(D−A2). A quadratic
irrational α must be a root of the equation

(10) X2 − TrC(T )/C (α) X + NC(T )/C (α) = 0.

The other root of (10) is the algebraic conjugate of α, namely α′ = A−∆
B .

Let us define ∆ = ±
√

D, where we choose the sign such that
∣

∣

∣

∣

∣

A −
√

D

B

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

A +
√

D

B

∣

∣

∣

∣

∣

.

Lagrange’s Theorem is not true in the form that every quadratic irra-
tional over C (T ) has periodic continued fraction or pseudo-periodic con-
tinued fraction (the definition can be found in [19]). But if the quadratic

irrational α = A+
√

D
B has a periodic expansion, then this expansion can be

obtained using the following algorithm which we will obtain similarly as in
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the classical theory of continued fraction expansion (see [18, Chapter 7.7]).
Let S0 = A, T0 = B and

(11) αn =
Sn +

√
D

Tn
, An = bαnc , Sn+1 = AnTn − Sn, Tn+1 =

D − S2
n+1

Tn

for n ≥ 0.

Lemma 1. Let (αn), (An), (Sn), (Tn) be the sequences defined by (11), then
α = [A0, A1, . . .] is the continued fraction expansion of α.

Proof. We have

αi − Ai =
Si +

√
D − AiTi

Ti
=

√
D − Si+1

Ti
=

Ti+1√
D + Si+1

=
1

αi+1

which verifies that α = [A0, A1, . . .]. Now we use induction to prove that
Si and Ti are polynomials such that Ti 6= 0 and Ti|(D − S2

i ). This holds for
i = 0. If it is true at the ith stage, we observe that Si+1 = AiTi − Si is a
polynomial. Then the equation

Ti+1 =
D − S2

i+1

Ti
=

D − S2
i

Ti
+ 2AiSi − A2

i Ti

establishes that Ti+1 is also a polynomial. Moreover Ti+1 cannot be zero,
since if it were, we would have D = S2

i+1, whereas D is not a perfect square.

Finally, we have Ti =
D−S2

i+1

Ti+1
, so that Ti+1|(D − S2

i+1). ¤

From this algorithm it follows that if there are integers j and k (j < k)
such that (Sj , Tj) = (Sk, Tk), then αj+i = αk+i for all i ≥ 0. Hence, α =
A+

√
D

B has a periodic expansion and that expansion is of the form

α = [A0, . . . , Aj−1, Aj , . . . , Ak−1].

Moreover, the converse is also true: if the expansion is periodic then there
are integers j < k such that (Sj , Tj) = (Sk, Tk).

In the next lemma we will see how the convergents of the continued frac-
tion expansion of a quadratic irrational α can be used to describe the so-
lutions of a certain Pellian equation. This will be useful in describing all
possible right-hand sides of the equation (2).

Lemma 2. Let AB be a polynomial which is not a perfect square in C [T ],
and let Pn/Qn denotes the nth convergent of continued fraction expansion of√

AB−1. Let the sequences (Sn) and (Tn) be defined by (11) for the quadratic

irrational
√

AB/B. Then

(12) AQ2
n − BP 2

n = (−1)nTn+1

for n ≥ 0.
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Proof. Since
√

AB /∈ C (T ), from
√

AB

B
=

(Sn+1 +
√

AB)Pn + Tn+1Pn−1

(Sn+1 +
√

AB)Qn + Tn+1Qn−1

it follows that

Sn+1Qn + Tn+1Qn−1 = BPn,

Sn+1Pn + Tn+1Pn−1 = AQn.

By combining these two equalities with (8), we find (12). ¤

In the next section we will apply this lemma in order to reduce the Thue
inequality to finitely many Diophantine equations.

4. From an inequality to a system of equations

In this section, we will consider the connections between solutions of the
equations (3), (4) and continued fraction expansion of the corresponding
quadratic irrationals in C

((

T−1
))

.
Applying the algorithm for quadratic irrationals from above to

θ1 :=

√

2c + 1

2c
=

√

2c(2c + 1)

2c
and θ2 :=

√

c

c − 2
=

√

c(c − 2)

c − 2

we find the following continued fraction expansions:

Lemma 3. The continued fraction expansion of the quadratic irrationals
θ1, θ2 are given by

θ1 =

[

1, 4c +
1

2
,−16c − 4, 4c + 1

]

and θ2 =

[

1, c − 3

2
,−4c + 4, c − 1

]

.

Proof. We prove the statement by applying the above algorithm. For the
quadratic irrational θ1 we have S0 = 0, T0 = 2c and therefore

α0 =

√

2c(2c + 1)

2c
= 1 +

1

c
+ O

(

1

c2

)

.

Thus we get A0 = 1. Next we get S1 = 1·2c−0 = 2c and T1 = 2c(2c+1)−(2c)2

2c =
1. It follows that

α1 =
2c +

√

2c(2c + 1)

1
= 4c +

1

2
− 1

16c
+ O

(

1

c2

)

,

and therefore A1 = 4c + 1
2 . Next we get S2 = 2c + 1

2 , T2 = −1
4 and

α2 =
2c + 1

2 +
√

2c(2c + 1)

−1
4

= −16c − 4 +
1

4c
+ O

(

1

c2

)

,

thus A2 = −16c − 4. Now S3 = 2c + 1
2 , T3 = 1 and

α3 =
2c + 1

2 +
√

2c(2c + 1)

1
= 4c + 1 − 1

16c
+ O

(

1

c2

)

,
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which implies A3 = 4c+1. Since in the next step we get S4 = 2c+ 1
2 , T4 = −1

4 ,
which is the same pair as in step 2, we conclude that we have the periodic
expansion as claimed in the statement.

For the second quadratic irrational θ2 we get in the same way with
(S0, T0) = (0, c − 2), (S1, T1) = (c − 2, 2), (S2, T2) = (c − 1,−1

2), (S3, T3) =

(c − 1, 2), (S4, T4) = (c − 1,−1
2), the expansion and therefore the proof is

finished. ¤

Assume that (U, V, Z) is a solution of the system (3) and (4). We will show
that V

U is a good approximation of θ1 and U
Z is a good rational approximation

of θ2 if the absolute value of this fractions is less than 1. Otherwise the
situation is handled in the following lemma.

Lemma 4. Let (U, V, Z) be a solution of (3), (4), respectively. If deg U >
deg V or deg Z > deg U , then all solutions of (7) have deg x = deg y = 0.

Proof. Indeed, from deg V < deg U , it follows that deg
(

x2 + xy − y2
)

<

deg
(

x2 + y2
)

. This implies that x, y are polynomials of the same degree
deg x = deg y = k. Let ξx, ξy ∈ C× be the leading coefficients of x, y, re-
spectively. Since the leading coefficient of x2 + xy − y2 has to vanish, it

follows that ξx = −1±
√

5
2 ξy. Now, equation (2) implies k = 0 in the fol-

lowing way: Assume that k > 0. Observe that, since c is not constant
and deg m ≤ deg c, we have deg(4cx3y) = deg(6cx2y2) = deg(4cxy3) =
deg c + 4k > max{deg m, deg x4, deg y4, deg(2x2y2)}. Therefore, by compar-
ing the leading coefficients in (2), we get that

(13) −4ξ2
x + 6ξxξy + 4ξ2

y = 0,

which is in contradiction to the above relation between ξx and ξy. This
contradiction shows that k = 0.

Now, we discuss the case deg U < deg Z. We have deg
(

x2 + y2
)

<

deg
(

−x2 + 4xy + y2
)

, which implies that x, y are polynomials of the same
degree deg x = deg y = k. As above, let ξx, ξy ∈ C× denote the leading
coefficients. Then ξx = ±iξy, and by using equation (13) (which was a
consequence of (2) in the case k > 0), it follows in the same way as above
that k = 0. ¤

So, we are left to consider the cases where deg U ≤ deg V and deg Z ≤
deg U and from now on will assume that this is the case. We proceed by
showing that in this case we have good approximations of θ1 and θ2, respec-
tively.

Lemma 5. Let (U, V, Z) be a solution of (3), (4), respectively. If deg U ≤
deg V , then

∣

∣

∣

∣

∣

√

2c + 1

2c
− V

U

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

θ1 −
V

U

∣

∣

∣

∣

<
1

|U |2 .
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If deg Z ≤ deg U , then
∣

∣

∣

∣

∣

√

c

c − 2
− U

Z

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

θ2 −
U

Z

∣

∣

∣

∣

<
1

|Z|2 .

Proof. The assumption deg U ≤ deg V is equivalent to
∣

∣

V
U

∣

∣ ≥ 1. Moreover,
observe that |θ1| = 1. Therefore, we find
∣

∣

∣

∣

∣

√

2c + 1

2c
− V

U

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

2c + 1

2c
− V 2

U2

∣

∣

∣

∣

∣

·
∣

∣

∣

∣

∣

√

2c + 1

2c
+

V

U

∣

∣

∣

∣

∣

−1

≤ |m|
|c| |U |2

(

min

{
∣

∣

∣

∣

∣

√

2c + 1

2c

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

V

U

∣

∣

∣

∣

})−1

=
|m|

|c| |U |2
≤ |U |−2 .

As above from deg Z ≤ deg U it follows
∣

∣

U
Z

∣

∣ ≥ 1, |θ2| = 1, and conse-
quently we get
∣

∣

∣

∣

∣

√

c

c − 2
− U

Z

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

c

c − 2
− U2

Z2

∣

∣

∣

∣

∣

·
∣

∣

∣

∣

∣

√

c

c − 2
+

U

Z

∣

∣

∣

∣

∣

−1

≤ |m|
|c| |Z|2

(

min

{∣

∣

∣

∣

√

c

c − 2

∣

∣

∣

∣

,

∣

∣

∣

∣

U

Z

∣

∣

∣

∣

})−1

=
|m|

|c| |Z|2
≤ |Z|−2 ,

which was the claim of the lemma. ¤

We would like to apply Proposition 1 in order to determine all values of
m ∈ C [T ], deg m ≤ deg c for which one of the equations

(2c + 1)U2 − 2cV 2 = m

(c + 2)U2 − cZ2 = −2m

has a solution. According to Proposition 1 and Lemma 5, for all solutions
(U, V, Z) the quotients V

U , U
Z are equal to a convergent of the continued frac-

tion expansion of θ1, θ2, respectively. For the determination of the corre-
sponding m’s, we use Lemma 2.

Since the period of the continued fraction expansions of θ1, θ2 are equal
to 2 in both cases, according to Lemma 2, we have to consider only the
convergents for n = 0, n = 1, n = 2. By checking all possibilities, it is now
easy to prove the following result.

Proposition 2. Let m ∈ C[T ], m 6= 0 be a polynomial such that deg m ≤
deg c. Then:

(i) If equation (3) has a solution in relatively prime polynomials U and
V in C[T ] with deg U ≤ deg V , then m = ζ2, ζ ∈ C× and

(U, V ) ∈ {ζ(Q2n, P2n), 2ζ(Q2n+1, P2n+1) : n ≥ 0},
where Pn/Qn is a convergent of θ1.
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(ii) If equation (4) has a solution in relatively prime polynomials U and
Z in C[T ] with deg Z ≤ deg U , then m = ξ2, ξ ∈ C× and

(U, Z) ∈ {ξ(P ′
2n, Q′

2n), 2ξ(P ′
2n+1, Q

′
2n+1) : n ≥ 0},

where P ′
n/Q′

n is a convergent of θ2.

Proof. Observe that from the proof of Lemma 3 it follows that T2n+1 = 1 for
n = 0, 1, . . . and T2n = −1

4 for all n = 1, 2, . . ., therefore we get the conclusion
by Lemma 2 in case (i). We just have to observe that the convergents are
only fixed up to a constant ζ ∈ C, thus we get the set stated in the lemma.

In the second case we observe that by Lemma 3 we have T2n+1 = 2 for
n = 0, 1, . . . and T2n = −1

2 for n = 1, 2, . . ., therefore we get the second
assertion (again by using Lemma 2). ¤

It follows that we only have solutions if the right-hand side of (2) is
constant. Moreover, we mention that for m = 0 there does not exist a
solution, since we assume that c is non-constant.

Now we will discuss the solvability in relatively prime polynomials U, V
and Z of the system of equations (3) and (4), where m ∈ C×.

We will need the recursive relations for the convergents with odd and even
subscripts. First we do it for the convergents of θ1. From Q0 = 1, Q1 = 4c+ 1

2
and

Q2n = (−16c − 4)Q2n−1 + Q2n−2, n ≥ 1,

Q2n+1 = (4c + 1)Q2n + Q2n−1, n ≥ 1,

it follows easily that

Q2n = −2
(

32c2 + 16c + 1
)

Q2n−2 − Q2n−4, n ≥ 2,

Q2n+1 = −2
(

32c2 + 16c + 1
)

Q2n−1 − Q2n−3, n ≥ 2,

and the analogous relations are valid for P2n and P2n+1. Now we derive the
recursive relations for the convergents of θ2. From P ′

0 = 1, P ′
1 = c − 1

2 and

P ′
2n = (−4c + 4)P ′

2n−1 + P ′
2n−2, n ≥ 1,

P ′
2n+1 = (c − 1)P ′

2n + P ′
2n−1, n ≥ 1,

it follows

P ′
2n = −2

(

2c2 − 4c + 1
)

P ′
2n−2 − P ′

2n−4, n ≥ 2,

P ′
2n+1 = −2

(

2c2 − 4c + 1
)

P ′
2n−1 − P ′

2n−3, n ≥ 2,

respectively, and the analogous relations are valid for Q′
2n and Q′

2n+1.
Using the proposition and the recurrences for the convergents we now get

the following lemma, which reduces the problem to solve 8 systems of equa-
tions which are given by the intersections of the above linear recurrences.

Lemma 6. Let (U, V, Z) ∈ C[T ] × C[T ] × C[T ] be solution of the system of
Pellian equations (3) and (4). Then there exist non-negative integers m and
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n such that U = ζvm or U = 2ζv′m with m = ζ2, ζ ∈ C× is the solution of
one of the following equations

vm = ±wn or vm = ±2w′
n or 2v′m = ±wn or v′m = ±w′

n,

where the sequence (vm) is given by

v0 = 1, v1 = −
(

64c2 + 24c + 1
)

,(14)

vm+2 = −2
(

32c2 + 16c + 1
)

vm+1 − vm, for m ≥ 0,

the sequence (wn) by

w0 = 1, w1 = −4c2 + 6c − 1,(15)

wn+2 = −2
(

2c2 − 4c + 1
)

wn+1 − wn, for n ≥ 0,

the sequence (v′m) by

v′0 = 4c +
1

2
, v′1 = −1

2

(

512c3 + 320c2 + 48c + 1
)

,(16)

v′m+2 = −2
(

32c2 + 16c + 1
)

v′m+1 − v′m, for m ≥ 0,

and finally the sequence (w′
n) is given by

w′
0 = c − 1

2
, w′

1 = −1

2

(

8c3 − 20c2 + 12c − 1
)

,(17)

w′
n+2 = −2

(

2c2 − 4c + 1
)

w′
n+1 − w′

n, for n ≥ 0.

Proof. If the system of equations (3) and (4) has solutions then, by
comparing the right hand sides of the equations (3) and (4), it follows that
ζ = ±ξ (where ζ, ξ are the constants in the general form of Proposition
2). Now, we just have to set vm = Q2m, v′m = Q2m+1, wn = P ′

2n and
w′

n = P ′
2n+1. Then the assertion about U follows from Proposition 2. The

recurrences follow from what we have said above. ¤

Therefore, in order to prove Theorem 1, it suffices to show that vm =
wn implies m = n = 0 and the equations vm = −wn, v′m = ±w′

n, vm =
±2w′

n, 2v′m = ±wn have no solutions.
For this purpose we will consider the sequences modulo certain multiples

of c. This was done earlier in various contexts of systems of Pellian equations
(e.g. in [1, 5, 3, 4]).

5. Congruence relations

The aim of this section is to find all possible values of U by the so called
congruence method introduced first in [5].
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Lemma 7. Let the sequences (vm), (wn), (v′m) and (w′
n) be defined by (14),

(15), (16) and (17). Then for all m, n ≥ 0 we have

vm ≡ (−1)m [8m(2m + 1)c + 1] (mod 64c2),(18)

wn ≡ (−1)n−1[2n(2n + 1)c − 1] (mod 4c2).(19)

v′m ≡ (−1)m

[

4 (m + 1) (2m + 1)c +
1

2

]

(mod 64c2)(20)

w′
n ≡ (−1)n

[

(n + 1) (2n + 1)c − 1

2

]

(mod 4c2)(21)

Proof. All relations are obviously true for m, n ∈ {0, 1}. Assume that (18)
is valid for m − 2 and m − 1. Then

vm = (−2)
(

32c2 + 16c + 1
)

vm−1 − vm−2

≡ (−2) (16c + 1)
[

(−1)m−1 (8 (m − 1) (2m − 1)c + 1)
]

−
[

(−1)m−2 (8 (m − 2) (2m − 3)c + 1)
]

≡ (−1)m [32c + 2 · 8 (m − 1) (2m − 1)c + 2]

−(−1)m [8 (m − 2) (2m − 3)c + 1]

= (−1)m [8m(2m + 1)c + 1] (mod 64c2).

Thus the first congruence follows by induction. Similarly, one can show the
other relations for wn, v′m, and w′

n by using the recurrence relations (15),
(16), and (17), respectively. ¤

By using the congruences from the last lemma we can show that all solu-
tions arising from the equations vm = ±wn, v′m = ±w′

n, vm = ±2w′
n, 2v′m =

±wn are just the trivial ones.

Proposition 3. If vm = wn then n = m = 0. The equations vm =
−wn, v′m = ±w′

n, vm = ±2w′
n, 2v′m = ±wn have no solutions in non-negative

integers n, m.

Proof. Suppose that m and n are non-negative integers such that vm = wn.
Then, of course, vm ≡ wn (mod 4c2). By Lemma 7, we have (−1)n ≡ (−1)m

(mod 2c) and therefore n and m are both even or both odd. Furthermore,
Lemma 7 implies

8m(2m + 1)c + 1 ≡ 1 − 2n(2n + 1)c (mod 4c2)

and

(22) 4m(2m + 1) ≡ −n(2n + 1) (mod 2c).

From (22) we have

4m(2m + 1) = −n(2n + 1),

which implies n = m = 0.
Suppose that m and n are non-negative integers such that vm = −wn.

Then we get in the same way as above that (−1)m = (−1)n−1 and therefore
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4m(2m + 1) = −n(2n + 1), which implies n = m = 0 and therefore −1 = 1,
a contradiction.

Suppose that m and n are positive integers such that v′m = ±w′
n. Then, of

course, v′m ≡ ±w′
n (mod 4c2). By Lemma 7, we have ±1

2(−1)n−1 ≡ 1
2(−1)m

(mod c). Furthermore, Lemma 7 implies

4 (m + 1) (2m + 1)c +
1

2
≡ − (n + 1) (2n + 1)c +

1

2
(mod 4c2)

and

(23) 4 (m + 1) (2m + 1) ≡ − (n + 1) (2n + 1) (mod 2c).

From (23) we have

4m(2m + 1) = −n(2n + 1),

which implies n = m = 0 and therefore 4c+ 1
2 = ±

(

c − 1
2

)

, a contradiction.
Suppose now that vm = ±2w′

n. Then we get by Lemma 7 that

(−1)m[8m(2m + 1)c + 1] ≡ ±2(−1)n

[

(n + 1)(2n + 1)c − 1

2

]

(mod 4c2).

From this we conclude (−1)m ≡ ±(−1)n−1 (mod c) and therefore (−1)m =
±(−1)n−1. Consequently, we get 4m(2m + 1) = −(n + 1)(2n + 1), a contra-
diction.

Finally, we consider the case that m and n are positive integers such that
2v′m = ±wn. Then Lemma 7 implies that (−1)m = ±(−1)n. Using Lemma
7 once again we get

2

[

4(m + 1)(2m + 1)c +
1

2

]

≡ −[2n(2n + 1)c − 1] (mod 4c2),

which implies 4(m + 1)(2m + 1) = −n(2n + 1), again a contradiction.
Altogether we have proved the statement of the proposition. ¤

To sum up we have derived the following result:

Corollary 1. Let c ∈ C [T ] be a non-constant polynomial, m ∈ C [T ] ,
deg m ≤ deg c. If the system of equations (3) and (4) has primitive solu-
tions (U, V, Z) with deg Z ≤ deg U ≤ deg V , then m = ζ2 with ζ ∈ C×

and all primitive solutions are given by (U, V, Z) = (±ζ,±ζ,±ζ) with mixed
signs.

Proof. This follows directly from Propositions 2 and 3. ¤

In the next section we will use these facts to prove our main theorem.

6. Proof of Theorem 1

Let (x, y) be a solution of the inequality (2), and let U = x2 + y2, V =
x2 + xy − y2, Z = −x2 + 4xy + y2. Then (U, V, Z) satisfies the system (3)
and (4) for some polynomial m ∈ C[T ] such that |m| ≤ |c|.
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Assume first that U, V and Z (with deg Z ≤ deg U ≤ deg V ) are relatively
prime. Then Corollary 1 implies that m = ζ2 and in this case we have
(U, V, Z) = (±ζ,±ζ,±ζ) with mixed signs and some ζ ∈ C×. Therefore, we
have

x2 + y2 = ±ζ,

x2 + xy − y2 = ±ζ,

−x2 + 4xy + y2 = ±ζ.

These equations imply that deg x = deg y. Let us assume that deg x =
deg y = k ≥ 1 and let the leading coefficient of x be ξx and the leading
coefficient of y be ξy. Then by comparing the leading coefficients in the
above equations, we see that ξx and ξy have to satisfy the system

ξ2
x + ξ2

y = 0,

ξ2
x + ξxξy − ξ2

y = 0,

−ξ2
x + 4ξxξy + ξ2

y = 0,

which clearly implies ξx = ξy = 0. This gives a contradiction that shows
deg x = deg y = 0 or equivalently x, y ∈ C. Clearly, this does not lead to
solutions in (C[T ] × C[T ])\C2.

Assume now that d = gcd(U, V ) and deg d > 0. Let U = dU1, V = dV1.
Then U1 and V1 are relatively prime and satisfy

(2c + 1)U2
1 − 2cV 2

1 =
m

d2
.

Since deg(m/d2) ≤ deg c, Proposition 2 implies that m/d2 = ζ2, i.e. m =
ζ2d2. From

4V 2 + Z2 = 5U2

it follows that d|Z, say Z = dZ1. In that way, we have obtained the primitive
triple (U1, V1, Z1) satisfying

(2c + 1)U2
1 − 2cV 2

1 = ζ2,

(c − 2)U2
1 − cZ2

1 = −2ζ2.

By Proposition 2, it follows that (U1, V1, Z1) = (±ζ,±ζ,±ζ) and (U, V, Z) =
(±ζd,±ζd,±ζd). Therefore, we have

x2 + y2 = ±ζd,(24)

x2 + xy − y2 = ±ζd,(25)

−x2 + 4xy + y2 = ±ζd,(26)

with mixed signs. Now (24) and (25) imply y (2y − x) = 0 or x (2y + x) = 0
(depending on the sign) and therefore (x, y) = (a, 0) or (x, y) = (2a, a)
(for the first possible choice of signs in the system above) or (x, y) = (0, a)
or (x, y) = (a,−2a) (for the second possible choice of signs in the system

above), where a ∈ C[T ] with 1 < |a| ≤ |c| 14 , i.e. 0 < deg a ≤ 1
4 deg c. This

completes the proof of our main theorem. ¤
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[3] A. Dujella and B. Jadrijević, A parametric family of quartic Thue equations,
Acta Arith. 101(2) (2001), 159–169.
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