AN UPPER BOUND FOR THE G.C.D. OF TWO LINEAR
RECURRING SEQUENCES*

CLEMENS FUCHS

ABSTRACT. Let (Gr) and (H,) be linear recurring sequences of integers
defined by G, = c1af +c2ay +---+ciaf and H, = d157 +d2065 +-- -+
dsBy, where t,s > 2,¢;,d; are non-zero complex numbers and where G,
does not divide H,, in the ring of power sums. Then, provided n > Ci,
we have
G.C.D.(Gyn, H») < |Gnl°,

for all n aside of a finite set of exceptions, whose cardinality can be
bounded by C3, where C1,C> and ¢ < 1 are effectively computable
numbers depending on the ¢;,dj,a; and B, ¢ = 1,...,t,5 = 1,...,s.
This quantifies a very recent result of Bugeaud, Corvaja and Zannier

[1].

1. INTRODUCTION

Let Ay, Ag,...,Ar and Go,G1,...,Gk_1 be integers and let (G,) be a
k-th order linear recurring sequence given by

(1) G,=A1Gp 1+ ---+A,Gp_y for n=kk+1,....

Let a1,qs,...,a; be the distinct roots of the corresponding characteristic
polynomial

(2) Xk A xE A

Then for n > 0

3) Gn = Pi(n)of + Pa(n)as + -+ + Pi(n)ay,

where P;(n) is a polynomial with degree less than the multiplicity of «;; the
coefficients of P;(n) are elements of the field: Q(a, ..., ).

We shall be interested in linear recurring sequences (G,), where all roots
of the characteristic polynomial of (G,,) are pairwisely different, which means
that

(4) Gpn = c1al + aj + -+ + ¢y,

for some c¢;,a; € C. If we restrict the roots to come from a multiplicative
semigroup A C C, then we let £4 denote to ring of complex functions on N
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of the form (4) where a; € A. Below, A will be usually Z; moreover in that
case we define by 5%' the subring formed by those functions having only
positive roots, i.e. by the semigroup N. Working in this domain causes no
loss of generality: this assumption may be achieved by written n = 2m + r
and considering the cases 7 = 0, 1 separately.

The recurring sequence (G,) is called nondegenerate, if no quotient
a;/aj for all 1 <4 < j <tisequal to a root of unity.

The arithmetic properties of such recurring sequences have been widely
investigated. We may mention the so-called Hadamard Quotient theorem
(proved by van der Poorten, cf. [5]), which says that if (G,), (Hy) € &,
then H, /G, € Z for all n € N can only hold, if there is a recurring sequence
(In) € & such that H, = Gy - I, for all n € N. Roughly speaking this
means that the quotient may have values in Z for all n € N only when this
is obvious, in the sense that it comes from an identical relation.

Corvaja and Zannier showed by using deep tools from Diophantine
Approximation a stronger result. They showed that if (G,),(H,) are as
above and if H,,/G,, € Z for infinitely many n then there exists a recurring
sequence (I,) such that H, = G, - I, for all n € N. This result can be found
in [2].

The above diophantine problems arise of investigating the finiteness of
the set of natural numbers n such that H,, /Gy, is an integer. Let us mention
that in a very recent paper, Corvaja and Zannier solved this question in
complete generality (i.e. for arbitrary linear recurrences G,, and Hy; cf. [3]).

Recently, Bugeaud, Corvaja and Zannier [1] proved that the same tech-
niques can be used to obtain more explicit results, bounding the cancellation
in the fraction H,/G,, which is represented by the G.C.D. of G,, and H,.
In fact they showed that, if a,b are integers > 2, and b is not a power of a,
then, provided n is sufficiently large, we have

(5) G.CD.(a" —1,0" — 1) K aZ.

The number 1/2 in the exponent is best-possible, in view of the example
a=cb=c* for odd s.

In the case, when a and b are multiplicatively independent, they proved
a sharper bound: Let ¢ > 0. Then, provided n is sufficiently large, we have

(6) G.CD.(a" — 1,b™ — 1) < exp(en).

They remarked that due to the ineffectiveness of Schmidt’s Subspace The-
orem, which is needed in the proof, the method does not allow to compute
an integer ng = no(a, b, €) such that the above inequality holds for n > ny.
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The aim of the present paper is to remark that one can get at least some
information about such an index ng.

2. RESULTS

We will use a quantitative version of Schmidt’s Subspace Theorem, which
is due to Evertse [4], to show that one can calculate an index ng such that the
above inequalities are true for all n > ng aside from a finite set of exceptions
whose cardinality can also be bounded effectively.

Moreover, we will formulate the result of equation (5) for arbitrary linear
recurring sequences in &7 instead of (a™ — 1) and (b" — 1) (see also [1],
Remark 4).

Theorem 1. Let (Gy) and (Hy) be linear recurring sequences of integers
defined by Gy, = craf +caaly + -+ -+ and H,, = d1 B +do 35 +---+ds 87,
where t,s > 2,c;,d; are non-zero complex numbers and where aq > --- >
ar > 0,0y > -+ > Bs > 0. Furthermore we assume that G, does not divide
H,, in the ring 8%’. Then, provided n > C1, we have

G.C.D.(Gp, H,) < |Gy,

for all n aside of a finite set of exceptions, which can be bounded by Co,
where C1,Co and ¢ < 1 are effectively computable numbers depending on the
¢ dj,a; and B, i =1,...,t,j=1,...,s.

Remark 1. Let us mention that by G.C.D. we denote here the uniquely
determined positive greatest common divisor of two integers.

Remark 2. The condition that G,, does not divide H, in the ring &7 is
clearly needed and can be verified explicitly (see [2] and Lemma 3 below). A
sufficient, but rather strong condition is that the roots ai,...,as, B1,---,0s
are multiplicatively independent.

Remark 3. In fact, ¢ can be chosen arbitrarily within the range

(4 s

(" s +1
where h is an arbitrary integer with

1
> max {1, R

"loga — log an

<c<l1,

and ¢, s are as in Theorem 1.

In the case ag = 1, i.e. ¢ = 2, which means that we have
G, =10} + ca,

a stronger result on the constant ¢ can be shown.
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Corollary 1. Let (Gy) and (H,) be linear recurring sequences of integers
defined by G, = c1a" + ¢ and H, = di1 7 + doffy + -+ + ds 87, where s >
2,¢;,d; are non-zero complex numbers and where o > 1,81 > -+ > B, > 0
and let € > 0. Furthermore we assume that G, does not divide H,, in the
ring E%. Then, provided n > Cy, we have

G.C.D.(Gp, Hy) < |Gn|* 57,

for all n aside of a finite set of exceptions, whose cardinality can be bounded
by Cs, where C1,Cy are effectively computable numbers depending on the
ci,dj,a,B5,1=1,2,7=1,...,5 and €.

Remark 4. Observe that this result includes the result of Bugeaud, Corvaja
and Zannier [1] mentioned in the introduction, who showed that

(7) G.C.D.(a" —1,b" — 1) < (a" — 1)2*¢,

provided that b is not a power of a, which is equivalent to the assumption
that a™ —1 does not divide b™ —1 in the ring 52' (which is just an elementary
algebraic fact), and n is sufficiently large.

Remark 5. The number 1 —1/s+ ¢ in the exponent is best-possible, in view
of the following example. Let ¢ be an integer > 2 and s > 2 be arbitrary.
Set G, = ¢ — 1 and H, = 5" 4+ ... 4+ ¢ + 1. Then we have
G.CD.(e" =1, 4 4 41) =
= T 1> T = (o

In the most simplest case, when G,, = a"™ — 1, H, = b" — 1 and a, b are
multiplicatively independent integers > 2, Bugeaud, Corvaja and Zannier
[1] obtained a considerably better bound.

If we consider (as in the Theorem above) recurrences of the form

Gp=c1d"+c¢o, and H,=d10] +doffy + -+ ds07,

then it is no longer sufficient to assume that a and (; are multiplicatively
independent, e.g. we have
6" —3"+2" -1
1

=3" 1,

but the dominant roots are multiplicatively independent. Therefore we use
a stronger condition to prove a similar result to that of Bugeaud, Corvaja
and Zannier with recurrences (H,) of arbitrary large order.

Theorem 2. Let (G,) and (H,) be linear recurring sequences of integers
defined by Gp, = c1a™ + ¢ and H, = di1} + dofff + -+ + ds52, where
s > 2,¢;,d; are non-zero complex numbers and where a > 1,56 > -+ >
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Bs > 0 are integers with o, 102+ Bs coprime. Furthermore, let € > 0.
Then, provided n > Cq, we have

G.C.D.(Gy, Hy) < |Gy,

for all n aside of a finite set of exceptions, whose cardinality can be bounded
by Cy, where C1,Co are effectively computable numbers depending on the
ci,dj,a,ﬂj, 1= 1,2,j = 1,...,8 and €.

Remark 6. Observe that for other classes of linear recurrences even better
upper bounds can be obtained. For example, let ¢ > 2 be an integer and let
s >r > 2 with G.C.D.(r,s) = 1. Then we have

G.CD.(" ™ 4 441, 1) < Cs,

for all n, where Cj is a constant independent of n. This follows from the fact
that the polynomials (X" —1)/(X —1) and (X* —1)/(X — 1) are relatively

prime.

3. AUXILIARY RESULTS

The proofs of our theorems depend on a quantitative version of the Sub-
space Theorem due to J.-H. Evertse [4].

Let K be an algebraic number field. Denote its ring of integers by O and
its collection of places by My. For v € Mg, x € K, we define the absolute
value |z|, by

() |z|, = |o(z)[YEY if v corresponds to the embedding o : K < R;
(i) |z|y = |o(z)|?¥ = |5(x)|FU if v corresponds to the pair of conju-
gate complex embedding 0,0 : K — C;

(iii) |z|, = (Np)_ord&’(“”)/[K:Q] if v corresponds to the prime ideal p of Ok.
Here Np = #(Ok /) is the norm of p and ord,(z) the exponent of p in the
prime ideal composition of (), with ord,(0) := co. In case (i) or (ii) we call
v real infinite or complex infinite, respectively; in case (iii) we call v finite.
These absolute values satisfy the Product formula

(8) H |z|ly =1 for z € K*.
vEMK

The height of x = (z1,...,2,) € K™ with x # 0 is defined as follows: for
v € Mg put

o\ 1/ (2[K:Q))
x|, = (E?:l |xi|12,[K'Q]) if v is real infinite,

. 1/[K:Q]
x|y = (2?21 |z LK'Q]> ifvis complex infinite,
|x|y = max(|z1]y;- -, |[Tnlv) ifvis finite

(note that for infinite places v, |- |, is a power of the Euclidean norm). Now
define

H(x) = H(z1,- ., 2n) = [ ] [Xlo-



6 CLEMENS FUCHS

For a linear form I(X) = a1X1 + --- + a,X,, with algebraic coefficients
we define #H(l) := H(a), where a = (a1,...,an) and if a € K™ then we
put |l|, = |a|], for v € Mkg. Further we define the number field K(I) :=
K(ai/aj,...,an/a;) for any j with a; # 0; this is independent of the choice
of j.
We are now ready to state Evertse’s result [4]. The following notations
are used:
- S is a finite set of places on K of cardinality s containing all infinite
places;
- {liyy- -, lnw}, v € S are linearly independent sets of linear forms in n
variables with algebraic coefficients such that

H(liw) < H, [K(lyp):K]<D forveS,i=1,...,n.

We choose for every place v € Mk a continuation of | - |, to the algebraic
closure of K and denote this also by | - |,.

Theorem 3. (Quantitative Subspace Theorem, Evertse) Let 0 < § <
1 and consider the inequality for x € K.

veS i=1 vES
Then the following assertions hold:
(i) There are proper linear subspaces T, ..., Ty, of K™, with
t < (2607% . §7™)5 1og 4D - loglog 4D

such that every solution x € K™ of (9) satisfying H(x) > H belongs to
TvU---UTy,.
(ii) There are proper linear subspaces St,...,Sy, of K™, with

ty < (150n* - 671)"T1(2 + log log 2H)
such that every solution x € K™ of (9) satisfying H(x) < H belongs to
S1U---US,,.

Below we have collected some simple lemmas which are needed in our
proofs.

Lemma 1. Let N;; denote the number of formal summands of (a1 + -+ +
a)?, where ay,...,ax denote formal commuting variables. Then

k+7—1
)
J
This is well known from combinatorics.

Next, we need an estimate for the number of 0’s occuring in a linear recur-
ring sequence (this number is called the zero multiplicity of the recurrence).
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Lemma 2. Let (G,) be linear recurring sequence defined by G, = ciaf +

coaly 4+ -+ cpaff where t > 2, ¢; are non-zero complex and ocy > -+ >y > 0
real numbers. Then the number of solutions of the equation
G,=0

1s at most t.

Proof. We proof our assertion by induction on t. The case ¢t = 1 is trivial.
Now consider the function of one real variable

g9(z) = crexp(zlog(ai/at)) + - + -1 exp(z log(as /ar—1)) + .

Clearly, the zeros of g at positive integral points are exactly the zeros
of Gy,. Now, g(z) is a differentiable function of the real variable z. So,
between any two zeros of g one can find a zero of the derivative g’ of
g. Since the derivative is a function of the same type, with £ — 1 terms,
the inductive hypothesis can be applied and the desired conclusion follows. [

Let us mention the remarkable result that there exists an upper bound
(which does only depend on the order ¢, but in fact triply exponentially) for
the zero multiplicity of arbitrary nondegenerate linear recurring sequences
of complex numbers due to W.M. Schmidt [9].

Last but not least, we need some information about the structure of the
ring of recurrences £, considered here. In fact, if two recurrences (G,) and
(H,) are given they lie in a much smaller ring, namely in £4 where A is the
multiplicative group generated by the roots of G,, and H,,. It is well known
(see [5]) and in fact easy to prove that this ring is isomorphic to the ring

ClTy,...,T;, T ... T,

if A has rank ¢ > 1. We simply choose a basis 71, ...,7: of A and associate
the variable T; the function n + 7. Now it is easy to show:

Lemma 3. Let (G,,),(H,) € &5 . If ay -~y and By - -+ Bs are coprime, then
(Gn) and (Hy,) are coprime in the ring £ .

Proof. Let Gy, = cra +cpay+- - -+ and Hy, = dy B +do By +- - -+ds 57,
where ¢,5 > 2,¢;,d; are non-zero complex numbers and where a1 > --- >
as > 0,0, > --- > s > 0 are integers. We denote by A the multiplicative
group generated by a1,...,a4, 01, ..,0s and we choose a basis 71, ...,7, for
A.

By the correspondance mentioned above we may write

Gn=9g(---,7) and H,=h(T,...,7),

with g, h € C[T1,...,T,] since the roots are integers. By the assumption that
ay - -ap and By - - - B are coprime it follows that g and h consist of different
variables. But from this it is clear that the polynomials g and h are coprime
and consequently the conclusion follows. O
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4. PROOF OF THEOREM 1
In the sequel Cy,Cs, ... will denote positive numbers depending only on

Ci,dj,Oéi and ﬂj,iz 1,...,t,5=1,...,s.

According to Lemma 2 the number of n such that G,, = 0 is at most ¢.
In this case we have

G.C.D.(Gy, Hy,) = H,,

and therefore these n must be excluded. Consequently, we can restrict our-
selves to numbers n for which G,, # 0. We write

H, Cn
z(n) = G,
n n

where ¢, 0,, are nonzero integers. Observe that we only consider those n for
which G,, # 0. Thus we have

(10) G.C.D.(Gy, Hy) - 0y, = G,
We now assume that
(11) [0n] < |Gnl'

for all n in a set X of natural numbers and for some ¢, which will be specified
later. We will show that, provided n > C} is large enough, that (11) can
only hold for a finite number of n and we give an upper bound Cy for ||
Then we can conclude that, provided n > C4, we have

[on] > |G|~
for all n ¢ ¥ and using (10) we conclude
G.C.D.(Gn, H,) = |G| - [0n]™F < |Gwl,
for all n ¢ ¥ with |X| < Cy. Thus the assertion of our theorem will follow
from this.
Fix an integer h > 0 and observe the following expansion
t

i - o (Ba(2)) -

1 h i ¢ [ \" !
1 > i ci [a;\" !
% % o
cral Z (=1 (Z_l (Oé_l) ) a
b j=h+1 i=2
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- mer(Ee))

Jj=0 =2
¢ ) A\ n\ htl
1 oM (e ()
+c a™ . ¢ n :
1007 1+212ci(ai)
Let us remark that for
log(2¢c
n > C L
log a1 — log o
we have
ci (a;i\"
|Gnl = |aaof +...+qai| = |eil|aa]” 1+Z el (a_i)
=2
T PO 4171 Y P T
2 1]]a1 . ol o > ot
Jj=2
(a2/01)"<1/2 for n>Cy
where
c:max{l,c—2 ,ﬁ}
(4] Cc1

Next we are going to approximate z(n) = H, /Gy, by a finite sum extracted
from the above expansion. We define

3(n) := e zh: (i: ¢ (Z—j)n>j’

Jj=

where h > 1 is an integer to be chosen later. We may write

where the e; € Q* and the f;, b are integers, b > 0, and the f;/b are nonzero
distinct rational numbers. Clearly Z(n) is nondegenerate. In fact, we take

_ _h+1
b=oa;".

Moreover, by Lemma 1 we have

(12) Ng<h+2_1>s:;c5.
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Now we estimate the approximation error we make, when we approximate

z(n) through Z(n). We have

(13) |z(n) — Z(n)| =
(e \ h+1
P (e ()
= |H,- — — - —
1% 14+ e (a_I)
ny\ h+1
t c [ o
_ T . ( 1)h+1 (Zz:O 1 (a_l) ) <
- n G,n =
2 o n(h+1) QJEh—H B n(h+1)
< H = n st n n
— | n‘ |Cl|a1 (COq) |Cl| 11 a )
where
d —max{1,|d1\, a|ds|}
We choose the integer h so that
h+1
(14) (%) B < 1.
a1

To get this, we must have
1
h>mu{L__£&i___1}
log a1 — log g

Observe that from now on h is fixed and therefore also N, e;, f;, b are fixed.
Now let S be the set of absolute values of Q consisting of co and all primes
dividing some of the f; or b and therefore oy --- a3 - - - 8. Thus,

IS| < w(ay---oyfi---Bs) =1+ Z 1.

plor--oaif1--Ps

We shall apply Theorem 3, so let us define for every v € S, N+1 independent
linear forms in X := (Xj,..., Xy) as follows: put

LO,oo(X) = X() — 61X1 — = eNXN
and for v € 5,0 <% < N, (7,v) # (0,00) put
Li,v(X) = X;.

Observe that for each v € S, the linear forms Lgg,,..., Ly, are indeed
linearly independent. We have

H(Liyp) < C7:=max{1,C¢H},
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where
2 A0t
Cy ... Cy

0

dj S ot tiit1
¢y

j=1,..., s
VEMQ  0<is,...,ir <h
0<iod... 48t <h

forv e S,i=0,...,h and where Cs = /C5 + 1. Furthermore Q(L;,) = Q
which means that the coefficients just lie in Q and therefore

[QLiy): Q=1 VYweESi=0,...,N.

Moreover, we have

H:=]] max {

00 ... 0
10 ...0

det(Loy, ..., Lyy) = * 0 1 o 01=1
x 0 0 1

which yields
|det(Loy,---,Lny)ly =1 Vv ES.

For n € ¥ define the vectors x,, = 9,(b"2(n), f1*,..., f%) € ZN*! and
consider the double product

al Livxn v
A

vES i=0 o

By putting

Loo(xn) = 00" (z(n) — e (%)n — . ..—en (J%N)n) —

= b"(2(n) — 2(n)),

we can rewrite the double product as

N —(N+1)
Zowo®n)loo- | TT lent™o | | TT T Ponf7lo <H|xn|v> .

veS\{oo} veS j=1 veS

Observe that, due to our choice of S, the f;' are S-umits for j > 1. In
particular, this implies

N

veES j=1

and therefore

N
(15) [T Rnsflo ) <loul™,

vES j=1
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and

(16) H |cnbn‘v < H |bn‘v —p " = al—n(h—H),

veS\{oo} veS\{oo}

where we have use the product formula (8). Therefore we get using (13),
(15) and (16)

- —(N+1)
|Lz v Xn Nt1 2dch+1 N % n(h+1)
HH < [0g] 1] 10 o H %n v .

Xn
v€ES i=0 | |v veES
Recall that we are assuming n € ¥, i.e.

0] < |G 7¢ < &7,

where
¢ = max{1,|c;|¢c}.

Hence, we get

n —(N+1)
L'L'U nj)\v c h+1
T 2tk < g (ﬁ NUCSIEER (Z_i) ) (H |xn|v) :

v€ES i=0 Xn v vES

where
C(C5 -I—l) d—h+1

Cyg =
|c1]

Last we need an upper bound for #(x,). We have
(17) H(xn) < [%Xn|oo = [0 max{[b"2(n)], [T, [N},
where we have used the choice of S. By using the fact that
1< [Ben| < [0 Ha| < dai ™D gy
and [f7| < o forj=1,...,N we get

(18) H(xn) < &d (a§”+ D m)"

Let us point out that the constant does not depend on 7.

We now choose 0 < § < 1 so that

)
(19) (o] )h"'lﬁ (aghﬂ)ﬁl) < 1.
This will be fulfilled for

(h + 1)[log a1 — log ap] — log 51
(h+ 1)log ag + log 51

which is possible in view of (14).

0<d<

bl
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In view of the bound for the double product we derived and (18), the
verification of (9) of the Quantitative Subspace Theorem 3 will follow from

o (o g Y < (s (o05)")
which is the same as
(agN+1)(1c)1 (a2a1—1)h+1161 (a§h+1)ﬁ1)6> n - (Cg(éa?)‘s) -1 '
However, this latter inequality follows from (19) for
log (Cg(éd)é)
log ( (C5+1)(c—1)+1+(h+1)(1-06) a2—(h+1)ﬁl—(1+d)) )

n > Cy =
Qg

whenever we have
Cs
Cs+1

<c<l1,

which implies that
(N+1)(1—-¢)—1<(Cs5+1)(1—-¢)—1<0.

Therefore, by the Quantitative Subspace Theorem 3, there exist finitely
many non-zero linear forms A;(X),...,Ay(X) with coefficients in Q and
with (1o52)

w(o B
g < Cio:= (260035—705) T (2 + loglog 207),

such that each vector x, is a zero of some A;.

Suppose first A; does not depend on Xy. Then, if A;(x,) = 0, we have a
nontrivial relation

N f n
Zu,(f) =0, w;€Qi=1,...,N.
=1

By Lemma 2 this can hold for at most a finite number of n. More precisely,
we can conclude that the number of those solutions can be bounded by

NSC55

which follows from Lemma 2.

Suppose that A; depends on Xj and that A;(x,) = 0. Then we have

N £\"
(20) z(n):;vi (f) , v, €Qi=1,...,N.
Let us assume that this equality holds for infinitely many n. In that case we
would get a relation of the form

ann = Gan,
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where R, is a power sum with positive roots, valid for infinitely many n.
This in turn implies the validity of the same relation for all n, which is
excluded by the hypothesis. An upper bound follows now from the fact that
the left hand side of

N f n
(21) Hy—Gpw Y v (ﬁ) =0
i=1

is a nontrivial recurring sequence with positive roots and therefore equation
(21) can hold for at most C5 -t + s many n by Lemma 2.

The the number of exceptions |2| can be bounded by
( "',33)
Cy:=1t+ (260035—705)‘” “ (2 + loglog2C7) (Cs5(t+ 1) + s)
and C; := max{Cy, Cy}. This completes the proof. O

5. PROOF OF COROLLARY 1

The proof is essentially the same as the proof of Theorem 1. We use the
same notations as in the proof before and mention only the part that must
be modified.

In this case we approximate z(n) by:

j=0

which we may write as

N £\
Z(n) = Zej (f) , mE =L,
j=1

where the e; € Q" and the f;, b are integers, b > 0, and the f;/b are nonzero
distinct rational numbers. Consequently, we have the estimate
(22) N < (h+1)s.
The approximation error is

92daht!

|2(n) — Z(n)| < ——BFa; " (g™

h+1
ol )

bl

where the constants are defined as before.

Now, if we set
1
c=1——+e¢,
s

we have
ai(l_c)_l <1
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and we therefore can choose h such that

(23) (ai(l‘c)‘l)hH B <1,

We choose linear forms as above and get

N |Li »(%n)| N+1)(1—¢)=1—(h+1)\" ~y
HH% Cg(ﬁlag +1)(1—c) (+)) H|Xn|v _

vES =0
n —(N+1)
o (ﬂlagh+1)(5(lfc)*1)*6) (H |xn|v) .

IN

As above we have
_ n n n ~7 (h+1) n
H(xn) < [Xnloo = [ou| max{p"2(n)], 7, |f3I} < &d (o 81)"

and we choose 0 < § < 1 so that
h+1 5
(a9 0)"™ g, (at0)" <1

This is possible in view of (23). With this, condition (9) of the Quantitative
Subspace Theorem 3 is valid if n > Cy.

The rest of the arguments are as above, the assertion follows and so the
proof is finished. O

6. PROOF OF THEOREM 2

In the sequel Cy,Cs, ... will denote positive numbers depending only on
¢,dj,acand Bj,i=1,...,t,j=1,...,s and e.

First observe that the only zero of G,, can be
" log (—c2/c1)
loga

We fix a positive integer k. Let us denote by J = {j = (j1,-.-,Js) € N° :
J1+ ...+ js = k}. If we write j; we mean the i-th vector in J with respect
to the lexicographical ordering. The cardinality of J is given by

s—i—k—l)

M::\J\:( L

For every j € J, we define
Hjp = 3" (d1f} + doffl + ...+ dsfBY),

where we have abbreviated BU1Js) = Bt -« - B3, Moreover, we write
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where ¢; ,,0, are integers. Since G, divides Hj, for all j and all positive
integers n we may choose d,, to be the denominator of H,,/Gp,.

We now assume that € > 0 is given and that
(24) oy < |G| (179

for all n in a set ¥ of natural numbers. We will again show that, provided
n > () is large enough, that (24) can only hold for a at most Cy many
numbers n. Then we conclude

G.C.D.(Gn, Hy) = |G| - 0n]™' < |Grl5,

provided that n > Cy, for all n ¢ ¥ with |X| < Cy. This will conclude our
proof.

For a fixed integer h > 1 we consider the expansion

Q
I
o
A%,
Q —
S
(]2
T
=
S
0|<5
=N
N~~~
|
g
I

=0
h — h h _nh
e, U
P cl Gr
For
log (2
S Og(l leo/e1l) _. ¢,
og
we have
|Gn| = |c1@™ + c2| > %a".

For a given index j € J we thus obtain, on multiplying by Hj,

h i—1
(25) |a(m) = Hi - 3o(-1) e ™ <
i=1

2|02|h —n(h+1 262‘02‘}1 (k+1)n _ _—n(h+1
< |Hj,n|' |61|h+1a n(h+1) < W ; o "+

Let us write Cyy for the constant appearing in the last expression. We
want to apply now the Subspace Theorem, viewing the left side of (25)
as a “small” linear form. We shall consider several such linear forms,
corresponding to values of j € J with k large enough. The idea of choosing
this linear forms is similar to that used in [3].
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We define
h 101‘—1
¢j(n) == zj(n) — Hjp - Z(_l)z_ zz =
i=1 1
) ' h s
=mm—@mm&WZ§3—lld2
i=1 1=1

for every index j = (j1,...,Js) with j1 +... + js = k.
Now, let S consist of co and all primes dividing a or one of the g;, 1 =
1,...,s. Second, we put

s+k-—1 s+ k
N_( ’ >+hQ+J.

Observe that the first summand is equal to the cardinality of J and the
second summand is an upper bound for the number of nonzero terms in the
double sum above. For convenience we shall denote vectors in Z" by writing

X= ('Tla"'axN) = (zl,"',zMayla"'ayN—M)-

We define for every s € S, N independent linear forms in X = (X1,..., Xy)
as follows. For j =1,..., M let j € J be the j-th vector with respect to the
lexicographical ordering and put

h s
Lj,oo(X) = Zj - Z Z(_ Y AL
=1 [l=1
while, for (,v) ¢ {(1,00),...,(M,00)} we put
L;»(X) = X;.
Observe that for each s € §, the linear forms Lq,,...,Ly, are indeed

linearly independent. We have

H(LZU)<C11 —\/ H max{

J}
vEMg

forve S,i=1,...,N. Furthermore Q(L;,) = Q and therefore
[QLiy): Q=1 YweS,i=1,...,N.

Moreover, we have

2
h
5

det(Llﬂ,, “en ,LNﬂ,) = 1,
which yields
|det(L1,U, ceey LN,v)|1) =1 VveS.

For n € X define the vectors x,, by

000 (25, (1), s 233 (), -, I BPT - BE" BT L),
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where the indices vary lexicographically over all tuples j € J,1 =1,...,s
and i = 1,...,h. Note that x, € Z" and that we have

Lioo(xn) = ¢5,(n), i=1,....M

and consider the double product

(26) H H |Lz1) xn

veS i=1 |Xn|v

First observe that we have for i > M

I 1ZiwGxn)lo = [ onB™ - B2 Bralh=m), < oy,

vES vES

where ji,...,7s,] and ¢ are suitable integers. Observe that we have
used our choice of S again and the product formula to obtain

[Toes 1617 -+ B Bpath=n|, =1
Further, for i < M we have z; = Dno/mzji( ) = ¢y, o™ whence

[T [Zia(xa)le <™
vES\{oo}
Also, in view of (25), we have, again for i < M,
| Li,o0 (xn)| < 012|0n|ﬂ§k+1)na*”.

Plugging these estimates into (26), we finally obtain

N M
ITIT 12 (adlo < oal ™ T TT 1 (el <

veSi=1 veS i=1
< C12‘Dn|M,6(k+1 YMn 7Mn|a ‘NfMathn —

_ 012‘0 |N h+1)Mn,B (k+1) Mﬂ
Recall that we are assuming n € ¥, i.e.
|Dn| < |Gn|1—e < Ea(l—e)n'

Hence we have

(27)
—N
|LZ v(%Xn)v 1—€)Nn  —(h+1)Mn g(k+1)Mn
H H |Xn|v S Ot( K " ( nﬁl H |x”|” :
veS i=1 veS

Let us point out here that the constant does not depend on n. We now

choose the integer k£ such that
11—
Es ST 1T
€

This implies that

o1=ON=(h+1)M (-3 -1)Mh _ 4
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We choose the integer h so that

(28) (=€) 21’;—1)Mh18£k+1)M <1,

1.e. we have

(k+ 1) log 51
((1 - E)Zi_'_l{ - )loga

This is possible because of our choice of k.

h >

On the other side, since in any case [0,| < |G|, we get

Hoxa) < [T bealo < pax {leal,
(US

where we have used our choice of S, the fact that two norms on QV are
equivalent and that the x; are integers. Now we have

65,00 < |Hj na™| < dE
and
891 Ble gRath=m, | < 5l3£k+1)na(h—1)na(1—e)n < éﬁ§k+1)nahn.
Thus we can conclude
(29) H(xp) < C13ﬁ§k+1)nah",

where the constant Ci3 := max{é,d} does not depend on n.

We now choose 0 < § < 1 so that

Z 5
(30) a((l—e)kiJr’;—l)Mhﬁ§k+1)M ( fﬂah) -1
This will be possible for small § in view of (28), namely for
log (a((lfe)%dffl)Mhﬁglﬂ—l)M)

log (ﬁf +1ah)

The verification of (9) of the Quantitative Subspace Theorem 3 will follow
from

0 <

0125]\[&((1,6)%,1)Mhnﬂ§k+1)Mn < (Cl3ahnﬁ§k+1)n) -4
in view of (27) and (29). This is the same as
(a((l_f) Zili_l)Mh”ﬁ§k+1)Mn (ﬁfHah)d)n < (C125N0f3) - .
This inequality follows from (30) for
log (C128N C%5)
log (a(u—e) k1) Mh (k)M <ﬁf+1ah)5> '

?

n > Cly =
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By the Quantitative Subspace Theorem 3 we can conclude, that there
exist finitely many non-zero linear forms A{(X), ..., Ay(X) with coefficients
in Q and with

(aBr-Bs)
g < Ci5:= (260N2(577N)w o (2 + loglog2C1y),

such that each vector x,, is a zero of some A;. Let us consider a hyperplane
given by
N-M
AX)=wZi+... +uyZy + Y vYi =0,
i=1
where the coefficients are rational numbers, not all zero. Substituting from
the definition of x,,, we get the equation

(B1)  oMMH,Y wipft Bl =G D i Bt B FralhTom,

jeJg (AN
where the sum runs lexicographically over j = (j1,...,75s) € J,l =1,...,s
and ¢ = 1,...,h and is valid for some integers n € 3. But this equation can

only hold identically, which means for all n € N, or it has a finite number
of solutions n € N. Therefore, we first assume that all u; are equal to zero
then we have

j s g, (h—i)n _
> wig Bl B At =,
(A
and at least one of the v;;; is different from zero. This can hold for at most

N — M many n by Lemma 2. Second, we assume that all v;;; are equal to
zero than we have

ahan'ZUj {1/3? =0,
jeg
which can hold for at most s + M many n by Lemma 2. If there is at least
one non-zero coefficient at both sides of (31) than we can conclude (observe
that by Lemma 3 G,, and H,, are coprime) that G,, divides

B0 ... 50
E:“J 1 Jere
jeJg

in the ring £ which is impossible by Lemma 3, since o and 3 - - - 5 are
coprime, or (31) holds for at most N many n.

Finally the number of exceptions can be bounded by
CQ =1 +C15 (S+2N)
and C; can be choose as C1 := max{C4, C14}. So, the proof is finished. O
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